

AGENDA CITY PLANNING COMMISSION

City Hall - Council Chambers 6131 Taylorsville Road September 13, 2022 6:00 P.M.

- 1. Call Meeting To Order
- 2. Roll Call
- 3. Opening Remarks By The Chair and Commissioners
- 4. Citizens Comments
- 5. Swearing of Witnesses
- 6. Pending Business
- 7. New Business
 - A. FINAL PLAT The applicant, DEC Land Co I LLC, is requesting approval of a Final Plat for 29 Building Lots and 2 green spaces in Carriage Trails, Section 7, Phase 5. (FP 22-36)
 - B. DETAILED DEVELOPMENT PLAN The applicant, HOMESTEAD DEVELOPMENT, is requesting approval of a Detailed Development Plan, for a multi-family residential development and senior living development. Property is located West of Brandt Pike and Norht of Fishburg road (DDP 22-34).
 THIS IS BEING MOVED TO 9/27/22

- C. DETAILED DEVELOPMENT PLAN The applicant, SKILKEN GOLD REAL ESTATE DEVELOPMENT, is requesting approval of a Detailed Development Plan for a proposed 6,138 sq. ft. Convenience Store with Fueling Pumps. Property is located at Old Troy Pike and Taylorsville Road (DDP 22-33).
- D. REZONING AND BASIC DEVELOPMENT PLAN The applicant, THOMAS E. DUSA, is requesting approval of a Rezoning to PI Planned industrial and a Basic Development Plan for a proposed lot for overnight truck parking future repair service garage. Property is located at Corner of Technology Blvd and Artz Road (RZ BDP 22-35). THIS IS BEING MOVED TO 9/27/22.
- 8. Additional Business
 - A. Yard & Company presentation
- 9. Approval of Minutes
 - A. Planning Commission August 9, 2022
- 10. Reports and Calendar Review
- 11. Upcoming Meetings
 - A. September 27, 2022 October 11, 2022
- 12. Adjournment

AI-8625 Planning Commission Meeting Date: 09/13/2022

Final Plat

Information

Agenda Title FINAL PLAT - The applicant, DEC Land Co I LLC, is requesting approval of a Final Plat for 29 Building Lots and 2 green spaces in Carriage Trails, Section 7, Phase 5. (FP 22-36)

Purpose and Background

Staff Report Decision Record Drawings Attachments

Memorandum

Staff Report for Meeting of September 13, 2022

To: Huber Heights City Planning Commission

From: Aaron K. Sorrell, Interim City Planner Community Planning Insights

Date: September 6, 2012

Subject: Final Plat Carriage Trails, Section 7, Phase 5

Application dated August 25, 2022

Department of Planning and Zoning	City of Huber Heights
APPLICANT/OWNER:	DEC Land Co. I LLC – Applicant / Owner
DEVELOPMENT NAME:	Carriage Trails
ADDRESS/LOCATION:	North of the intersection of Carriage Trails Parkway and Forestedge Street. West of Brandt Pike.
ZONING/ACREAGE:	Planned Mixed Use / 10.5378 Acres
EXISTING LAND USE:	Residential / Vacant
ZONING ADJACENT LAND:	Planned Mixed Use
REQUEST:	The applicant requests approval a final plat for Carriage Trails – Section 7, Phase 5.
ORIGINAL APPROVAL:	Carriage Trails Development – 2008 Detailed Development Plan – March 15, 2022
APPLICABLE HHCC:	Chapter 1171, 1179
CORRESPONDENCE:	In Favor – None Received In Opposition – None Received

STAFF ANALYSIS AND RECOMMENDATION:

Overview

The applicant requests approval of a partial final plat for section seven, phase five of the Carriage Trails subdivision. This phase contains 29 buildable lots on approximately 10.53 acres.

Conformance with Zoning Regulations

The detailed development plan was approved by the Planning Commission on March 23, 2021, with the condition that lots 1-36 not be issued a zoning permit until the annexation is complete. <u>This application does not include those lots.</u>

Staff Analysis

The applicant requests approval of the final plat for section seven, phase five of the Carriage Trails subdivision. This final plat accurately reflects the DDP previously approved by the Planning Commission. Staff recommends approval.

Additional Comments:

Fire: None

City Engineer: None

Recommendation

Staff recommends approval of the final plat submitted on August 25, 2022.

Planning Commission Action

Planning Commission may take the following actions with a motion to:

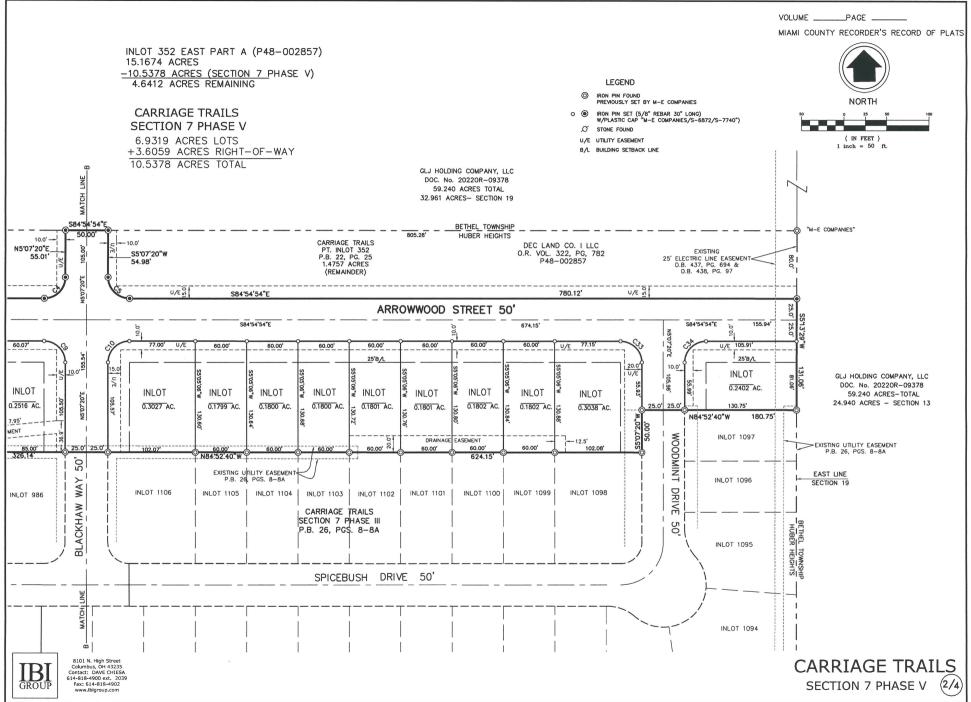
- 1) Approve the Final Plat as submitted (staff recommendation);
- 2) Approve the Final Plat with conditions; or,
- 3) Deny the Final Plat

Planning Commission Decision Record

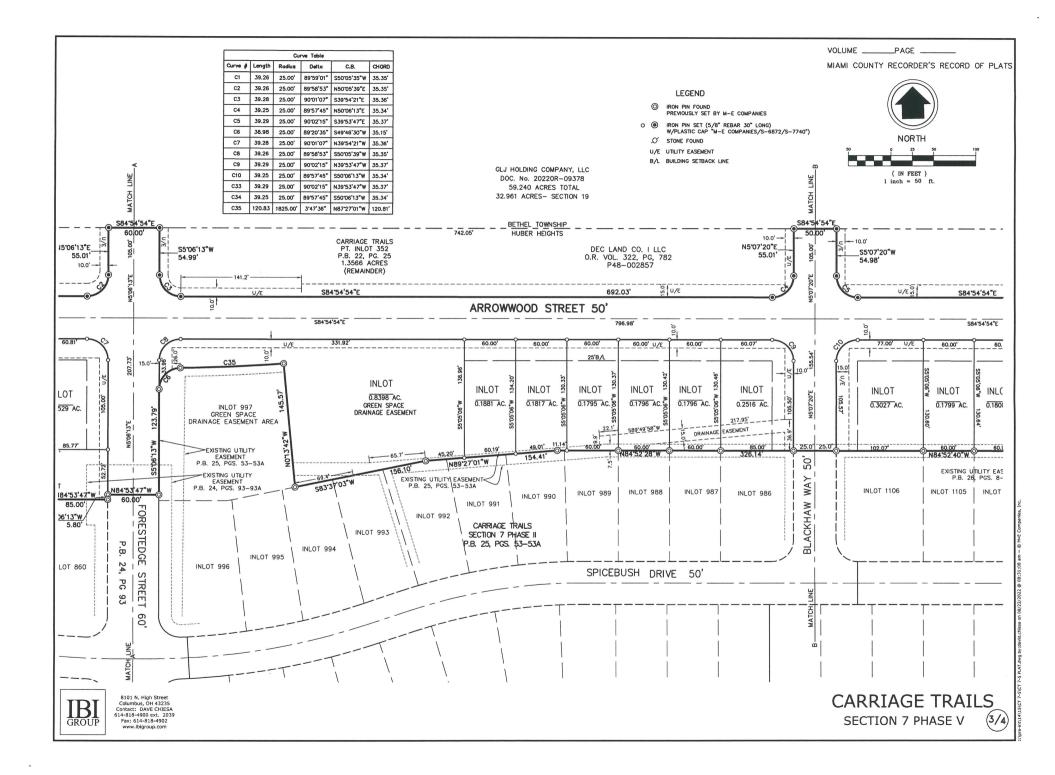
WHEREAS, on August 25, 2022, the applicant, DEC Land Co. I, LLC, requested approval of a Final Plat for Section 7, Phase V of the Carriage Trails Development (Case FP 22-36), and;

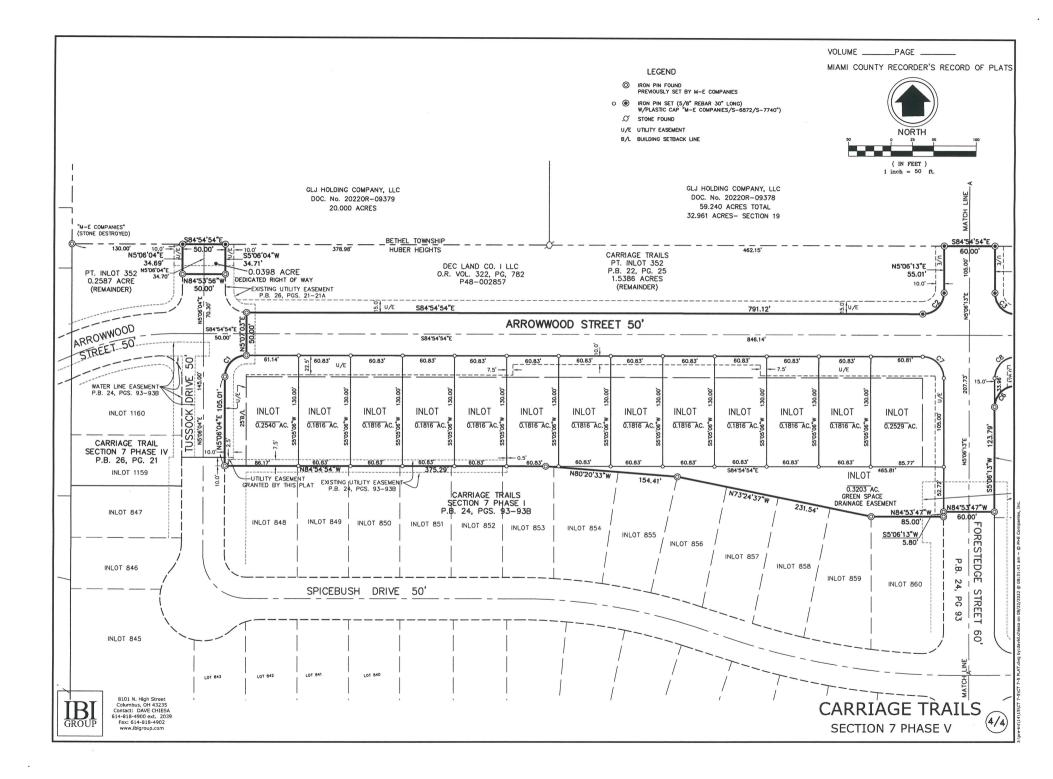
WHEREAS, on September 13, 2022, the Planning Commission did meet and fully discuss the details of the request.

NOW, THEREFORE, BE IT RESOLVED that the Planning Commission hereby recommended approval of the request.


moved to approve the request by the applicant, DEC Land Co. I, LLC, for approval of the Final Plat for Section 7, Phase V of the Carriage Trails Development (Case FP 22-36) in accordance with the recommendation of Staff's Memorandum dated September 6, 2022.

4


Seconded by . Roll call showed: YEAS: NAYS: Motion to recommend approval carried


Terry Walton, Chair Planning Commission Date

DESCRIPTION	CARRIAGE TRAILS	VOLUME PAGE
		MIAMI COUNTY RECORDER'S RECORD OF PLATS
BEING A REPLAT OF PART OF INLOT 352, IN THE CITY OF HUBER HEIGHTS, MIAMI COUNTY, OHIO AS CONVEYED TO DEC LAND CO. I LLC, BY DEED RECORDED IN OFFICIAL RECORD	SECTION 7 PHASE V	
VOLUME 322, PAGE 782, OF THE MIAMI COUNTY RECORDER'S	PART INLOT 352	
RECORDS.		
PROPERTY OWNERS CONSENT STATE OF	OHIO, COUNTY OF MIAMI, CITY OF H	IUBER HEIGHTS,
THE UNDERSIGNED, DIANA K. COLYER ON BEHALF OF DEC LAND CO.	AUGUST 2022	
I LLC, BEING THE OWNER OF THE PARCEL HEREIN REPLATTED, DOES HEREBY CONSENT TO THE EXECUTION OF SAID REPLAT AS SHOWN		
HEREON AND HEREBY DEDICATES TO THE PUBLIC USE FOREVER THE STREETS AND EASEMENTS SHOWN HEREON.		FEE \$
EASEMENTS SHOWN HERE ON THE WITHIN PLAT ARE TO BE RESERVED FOR THE CONSTRUCTION, OPERATION, MAINTENANCE,	SITE	· *
REPAIR, REPLACEMENT OR REMOVAL OF WATER, SANITARY SEWER, STORM SEWER, GAS, ELECTRIC, TELEPHONE OR OTHER UTILITY LINES	2 Colorado mana damando	
OR SERVICES AND FOR THE EXPRESS PRIVILEGE OF REMOVING ANY OR ALL TREES OR OTHER OBSTRUCTIONS TO THE FREE USE OF SAID		MIAMI COUNTY RECORDER BY DEPUTY RECORDER
EASEMENT AND FOR PROVIDING INGRESS TO AND EGRESS FROM THE PREMISES FOR SAID PURPOSES AND ARE TO BE MAINTAINED AS	TATATIONNE BLVD. MAMI COUNTY	
SUCH FOREVER.		MIAMI COUNTY AUDITOR
WITNESS DEC Land Co. LLC By: Corriage Trails of The Heights LLC	SHULL RD.	APPROVED AND TRANSFERRED, 2022.
By: Diana K. Colyer,	EXECUTIVE BLVD.	MIAMI COUNTY AUDITOR
Treasurer	INTERSTATE 70	
	LOCATION MAP	
STATE OF OHIO, COUNTY OF, SS:	NO SCALE	BY DEPUTY AUDITOR
	M.O.A. RESTRICTIONS: All of the lots in Carriage Trails Section 7, Phase V are Subject to the	APPROVED:
BE IT REMEMBERED THAT ON THIS DAY OF 2022, BEFORE ME, THE UNDERSIGNED, A NOTARY PUBLIC IN AND FOR SAID COUNTY AND STATE, PERSONALLY CAME DIANA K.	Declaration of Covenants, Conditions, Restrictions and Easements of the Master Owners Association as recorded in Official Record Volume 0029,	THE WITHIN PLAT DEDICATION WAS APPROVED BY THE CITY
COLYER, FOR SAID OWNER, WHOM ACKNOWLEDGED THE SIGNING AND EXECUTION OF THE FORGOING PLAT TO BE HER VOLUNTARY ACT	Pages 135-210 of the Miami County, Ohio, Recorder's Office. Restrictions created in this Declaration are intended for the benefit of	PLANNING COMMISSION OF THE CITY OF HUBER HEIGHTS,
AND DEED AND THE VOLUNTARY ACT AND DEED OF DEC LAND CO. I LLC. IN TESTIMONY WHEREOF, I HAVE SET MY HAND AND NOTARY	and are binding on all lots in the subdivision.	OHIO, IN ACCORDANCE WITH SECTION 1107.12 OF THE CITY'S SUBDIVISION REGULATIONS
SEAL ON THE DAY AND DATE ABOVE WRITTEN.	NEIGHBORHOOD DRAINAGE PATTERN Unless otherwise designated a five foot wide private drainage easement shall exist along all common lot lines, the common lot line being the	ON, 2022
MY COMMISSION EXPIRES	centerline of said easement.	
	BUILDING SETBACKS Setback lines shown on this plat depict current zoning requirements only	CHAIR OF THE HUBER HEIGHTS PLANNING COMMISSION
NOTARY PUBLIC	and are not intended to create additional restrictions on the use of the local	
	zoning requirements shall control.	CERTIFICATION
CONSENT OF LIENHOLDER WESBANCO BANK, INC.	EASEMENTS EASEMENTS OUTSIDE OF THE PLATTED AREA ARE ON LANDS OWNED BY	THE WITHIN PLAT IS A REPLAT OF PART OF A TRACT OF LAND
	DEC LAND CO. I LLC AND ARE TO BE USED FOR UTILITIES FOR FUTURE DEVELOPMENT.	CONTAINING 124.027 ACRES AS DESCRIBED IN A DEED TO DEC LAND CO. I LLC OF RECORD IN OFFICIAL RECORD VOLUME 322, PAGE 782,
BY:PAVID_P. DUNCAN	GREEN SPACE	AS RECORDED IN THE DEED RECORDS OF MIAMI COUNTY, OHIO.
TITLE: SENIOR VICE PRESIDENT	Inlots and are non-buildable, Green Space lots and will be owned and maintained by the Master Owners Association.	THE MEASUREMENTS ARE CERTIFIED CORRECT AND IRON PINS WILL BE SET AS SHOWN.
STATE OF, COUNTY OF, SS:	BASIS OF BEARINGS	IBI GROUP
BE IT REMEMBERED THAT ON THISDAY OF, 2022, BEFORE ME, A NOTARY PUBLIC IN AND FOR SAID STATE, PERSONALLY	BEARINGS ARE BASED ON THE NAD 83 OHIO STATE PLANE	
APPEARED DAVID P. DUNCAN, SENIOR VICE PRESIDENT OF WESBANCO BANK, INC., WHO REPRESENTED THAT THEY ARE DULY AUTHORIZED IN THE PREMISES	COORDINATE SYSTEM, GRID SOUTH ZONE. REFERENCES:	ВҮ
AND WHO ACKNOWLEDGED THAT THEY DID SIGN THE FORGOING INSTRUMENT AND THAT THE SAME IS THEIR VOLUNTARY ACT AND DEED FOR THE USES AND	MIAMI COUNTY RECORDER'S DEED RECORDS:	David L. Chiesa P.S. Registered Surveyor No. 7740
PURPOSES IN SAID INSTRUMENT MENTIONED. IN TESTIMONY WHEREOF, I HEREUNTO SET MY HAND AND AFFIX MY NOTARY SEAL ON THE DAY AND DATE	O.R. 322, PG. 782 MIAMI COUNTY RECORDERS PLAT RECORDS	
AFORESAID.	P.B. 26, PC.8 P.B. 25, PC.53 P.B. 24, PC.93 P.B. 26, PC.21	PREPARED BY
	P.B. 22, PG.25	DEVELOPER DEC LAND COLLUC
		DEC LAND CO. I LLC 51 31 POST ROAD SUITE 200 GROUP GROUP GROUP GROUP
NOTARY PUBLIC MY COMMISSION EXPIRES:		DUBLIN, OHIO 43017

s\CT 7-5\CT 7-5 PLAT.dwg by:davld.chlesa on 08/22/2022 \otimes 08:30:35 am \sim (

Information

Agenda Title

DETAILED DEVELOPMENT PLAN - The applicant, HOMESTEAD DEVELOPMENT, is requesting approval of a Detailed Development Plan, for a multi-family residential development and senior living development. Property is located West of Brandt Pike and Norht of Fishburg road (DDP 22-34). THIS IS BEING MOVED TO 9/27/22

Purpose and Background

Attachments

No file(s) attached.

7. B.

Information

Agenda Title

DETAILED DEVELOPMENT PLAN - The applicant, SKILKEN GOLD REAL ESTATE DEVELOPMENT, is requesting approval of a Detailed Development Plan for a proposed 6,138 sq. ft. Convenience Store with Fueling Pumps. Property is located at Old Troy Pike and Taylorsville Road (DDP 22-33).

Purpose and Background

Attachments

Staff Report Decision Record Site Improvements Sign Package Elevations Revised Ordinance BDP Fire Assessment

Memorandum

Staff Report for Meeting of September 13, 2022

To: Huber Heights City Planning Commission

From: Aaron K. Sorrell, Interim City Planner Community Planning Insights

Date: September 7, 2022

Subject: Sheetz – Detailed Development Plan Approval

Application dated August 19, 2022

Department of Planning and Zoning	City of Huber Heights
APPLICANT/OWNER:	Skilken Gold Real Estate Dev. – Applicant Broad Reach Retail Partners, LLC - Owners
DEVELOPMENT NAME:	Broad Reach / Sheetz
ADDRESS/LOCATION:	NE Corner of Old Troy Pike and Taylorsville Rd.
ZONING/ACREAGE:	Planned Mixed Use (PM) / 2.82 Acres
EXISTING LAND USE:	Vacant
ZONING ADJACENT LAND:	PM (North), R-6 (East), R-4 (South), PC (West)
REQUEST:	The applicant requests approval of a Detailed Development Plan to construct a 6,138 SF convenience store with fueling pumps.
ORIGINAL APPROVAL:	The Broad Reach basic development plan and rezoning was approved by the Planning Commission on May 11, 2021, and subsequently approved by City Council on June 14, 2021. A major change to the Basic Development Plan was approved by City Council on August 9, 2022
APPLICABLE HHCC:	Chapter 1171, 1179
CORRESPONDENCE:	In Favor – None Received In Opposition – None Received

STAFF ANALYSIS AND RECOMMENDATION:

<u>Overview</u>

The applicant requests to construct a 6,138 SF convenience store with fueling pumps.

During the informal review with the Planning Commission there was significant discussion about the proposed use as compared to the uses illustrated on the adopted basic development plan. The Planning Commission expressed concerns about the perceived deviation from the originally illustrated uses and layout on the south side of the development, and members felt that the City Council should have an opportunity to review the new development proposal. It was recommended by the Planning Commission and agreed to by the applicant that they would request a major change to the basic development plan, which allows City Council the opportunity to review the proposal.

The Planning Commission voted 3-2 to recommend approval of the Major Change to the Basic Development Plan (BDP) on June 28, 2022. The BDP included a convenience store, fueling pumps, car wash and vacuums, and two ground signs.

During the public hearing the City Council expressed concerns regarding the car wash. The applicant subsequently amended the BDP to remove the car wash and vacuum pumps, and slightly modified the parking area. The City Council approved the revised BDP on August 8, 2022. The applicant is now seeking Detailed Development Plan (DDP) approval based on the revised BDP.

Applicable Zoning Regulations

The approved BDP has the following conditions:

- 1. All conditions approved by the Planning Commission on May 21, 2021, shall remain in effect;
- 2. The two additional ground mounted gas price signs shall not exceed 6' -10";
- 3. The applicant shall comply with all engineering, building and fire codes;
- 4. The applicant shall update the basic development plan to reflect all conditions imposed by the Planning Commission;
- 5. The Basic Development Plan shall be the revised site plan submitted July 28, 2022, and attached as Exhibit A;
- 6. The addition of a car wash shall be considered by this Council no sooner than one year from the effective date of this Ordinance.
- 7. Prior to the issuance of a zoning permit, the applicant shall enter into a PUD Agreement with the City for the purpose, but not the sole purpose, of establishing the development obligations of the applicant and requiring the submittal of a performance bond, cash bond, or letter of credit to insure the installation of landscaping as approved.

Conformance with Zoning Regulations

The relevant sections to this application are discussed in detail below.

Conformance with the approved conditions of the BDP:

1. All conditions approved by the Planning Commission on May 21, 2021, shall remain in effect;

Those conditions related to internal circulation, signs, uses and road improvements. Those conditions remain in effect.

2. The two additional ground mounted gas price signs shall not exceed 6' -10"; The DDP illustrates two ground mounted gas price signs consistent with the approved revised BDP. Both signs are approximately 6'-10" and internally illuminated.

3. The applicant shall comply with all engineering, building and fire codes;

The applicant revised the canopy heights and curb radius to comply with the fire department requests. All other engineering and building code compliance will be done during permitting.

4. The applicant shall update the basic development plan to reflect all conditions imposed by the Planning Commission;

The applicant submitted a revised plan indicating the general location of the ground signs. No other conditions were imposed by the Planning Commission.

5. The Basic Development Plan shall be the revised site plan submitted July 28, 2022, and attached as Exhibit A;

The revised BDP ordinance and site plan are attached to the staff report. The DDP reflects the approved, revised BDP.

6. The addition of a car wash shall be considered by this Council no sooner than one year from the effective date of this Ordinance.

The DDP no longer includes a car wash or vacuum stations, consistent with the revised BDP.

7. Prior to the issuance of a zoning permit, the applicant shall enter into a PUD Agreement with the City for the purpose, but not the sole purpose, of establishing the development obligations of the applicant and requiring the submittal of a performance bond, cash bond, or letter of credit to insure the installation of landscaping as approved.

A zoning certificate will not be issued without a landscaping bond or other surety instrument.

Other zoning requirements:

Signs

A sign package was submitted with the BDP application approved by Planning Commission and City Council. That review focused primarily on the two ground signs and less on the wall and directional signage.

The Planning Commission has great latitude in approving signs within a Planned Development area. The DDP application contains a sign package that is consistent with the original BDP application but does not contain any car wash signs. The sign package is also largely consistent with Section 1189 of the zoning code. The applicant is proposing a total of approximately 233 SF of signage. Recently, the Planning Commission approved 246 SF of signage for Discount Tire.

<u>Wall signs:</u> The code suggests up to 150 SF of wall signage, and no more than four wall signs. The applicant is proposing approximately 117 SF of wall signage among five signs.

<u>Canopy signs:</u> The code suggests canopy signs should be limited to no more than 50% of the building's primary frontage and limited to one sign per street frontage. The building is on the corner of two major thoroughfares; thus, it is reasonable to argue the suggested maximum canopy signage should be 75 SF (50% of 150 SF). The applicant is proposing three canopy signs with a total area of 46 SF.

<u>Ground signs</u>: The applicant is proposing two 6'-10" ground signs, consistent with the approved BPD. The total area of both signs is 70 SF.

The applicant is also proposing various directional signs and ordering signs. The total number of signs is less than has been recently approved. Staff feels the directional signs, and order and menu boards are well placed. The proposed landscaping will partially obscure the menu and order board from Taylorville Road.

Landscaping

The applicant is proposing a significant landscaping plan with a mixture of street and shade trees, bushes, and ground cover.

<u>Street Trees:</u> The landscaping plan indicates the correct number of street trees along both frontages. The applicant is proposing to cluster the trees, rather than space them at 40' on center. The longest "gap" between trees is approximately 85'. Staff feels this arrangement is acceptable, and gaps in the plantings may lessen the likelihood of severe trimming due to wall signs being obscured.

<u>Perimeter/Parking areas</u>: The applicant is proposing a series of hedge rows, planting beds and a perimeter tree lines that meet the landscaping code. The fueling area will have a perimeter of flowering semi-evergreen shrubs that have a mature height of approximately 3'-5'. The parking areas will have a perimeter planting of Japanese

Holly. These evergreen shrubs are dense and can grow to a height of approximately 10' and withstand heavy pruning. Staff feels this is an appropriate landscaping material to obscure headlights from the impacting neighboring properties. The applicant is proposing a row of Arborvitae along the south edge to buffer the development from the existing multi-family development.

Lighting

The photometric plan submitted with the application indicates there will be no light trespass from this site onto the adjacent residential areas. The parking areas are illuminated to code, and pole heights and luminary types meet the zoning code.

Mechanical / Storage areas

The DDP indicates all storage and dumpster areas are enclosed and screened according to the zoning code.

Parking

The retail floor area is 2,548 SF. The code requires approximately 28 spaces and at least five stacking spaces. The site plan illustrates 51 parking spaces and room to stack 10 vehicles.

Architecture

The main building is clad with a mixture of brick, stone and glass. There are no blank walls, and the building is oriented toward the two main frontages. The fueling canopy supports are partially clad in brick, matching the main building. The architecture is consistent with the intent of the commercial building standards in the zoning code.

Staff Analysis

The DDP application conforms with the revised Basic Development Plan ordinance approved by the City Council. Additionally, the DDP generally conforms to all relevant zoning regulations, including landscaping, lighting, parking, architectural standards and signs.

The building elevations indicate accessory sales displays customarily associated with convenience stores such as ice machines, propane bottles, and miscellaneous fluid sales. Given the recent discussions regarding outdoor sales and displays, staff recommends prohibiting outdoor sales, storage or displays of any product in any parking area, along the perimeter of the parking and fueling area, or in any travel aisles. Staff recommends limiting outdoor sales and displays to the exterior building wall or under the fueling canopy.

Additional Comments:

Fire: No additional comments received.

City Engineer: No additional comments received.

Recommendation

It is staff's opinion that the requirements of Section 1171.09 have been met and staff recommends approval of the Detailed Development Plan application submitted on August 19, 2022, with the following conditions:

- The applicant shall conform to the Basic Development Plan ordinance approved on August 8, 2022;
- Outdoor sales, storage or displays of any product shall be prohibited in any parking area, along the perimeter of the parking and fueling area, or in any travel aisles. Outdoor sales and displays shall be permitted along the exterior building wall and under the fueling canopy, so long as all ADA clearances are maintained.

Planning Commission Action

Planning Commission may take the following actions with a motion to:

- 1) Approve the Detailed Development Plan, with or without conditions;
- 2) Deny the Detailed Development Plan; or
- 3) Table the application in order to gather additional information.

Planning Commission Decision Record

WHEREAS, on August 19, 2022, the applicant, Skilken Gold Real Estate Development, requested approval of a Detailed Development Plan for a proposed 6,138 square foot Convenient Store with Gas Station and Canopy. Property is located at Old Troy Pike and Taylorsville Road further identified as Parcel Number P70 04005 0015 and P70 04005 0043 of the Montgomery County Auditor's Map (Case DDP 22-33), and;

WHEREAS, on September 13, 2022, the Planning Commission did meet and fully discuss the details of the request.

NOW, THEREFORE, BE IT RESOLVED that the Planning Commission hereby recommended approval of the request.

moved to approve the request by the applicant, Skilken Gold Real Estate Development, for approval of a Detailed Development Plan for a proposed 6,138 square foot Convenient Store with Gas Station and Canopy. Property is located at Old Troy Pike and Taylorsville Road (Case DDP 22-33), in accordance with the recommendation of Staff's Memorandum dated September 7, 2022, with the following conditions:

- 1. The applicant shall conform to the Basic Development Plan ordinance approved on August 8, 2022.
- 2. Outdoor sales, storage or displays of any product shall be prohibited in any parking area, along the perimeter of the parking and fueling area, or in any travel aisles. Outdoor sales and displays shall be permitted along the exterior building wall and under the fueling canopy, so long as all ADA clearances are maintained.

Seconded by Roll call showed: YEAS NAYS: Motion to recommend approval carried

Terry Walton, Chair Planning Commission

Date

DEVELOPER: SKILKEN GOLD REAL ESTATE DEVELOPMENT 4270 MORSE ROAD COLUMBUS, OH 43230 PHONE: (614) 282-0936 CONTACT: BETH COTNER

ENGINEER: CESO, INC. 2800 CORPORATE EXCHANGE DR, SUITE 400 COLUMBUS, OH 43231 PHONE: (380) 799-5227 CONTACT: JOSH LONG EMAIL: JOSH.LONG@CESOINC.COM

GOVERNING AGENCIES AND UTILITY COMPANIES:

VINEBROOK HOMES, LLC

OLD TROY PIKE & TAYLORSVILLE ROAD

ZONE X - AREA OF MINIMAL FLOOD HAZARD

P70040050015

2.82 AC

PROPOSED

3 (1 VAN)

53

SEWER: CITY OF HUBER HEIGHTS PHONE: (937) 233-1423 CONTACT: RUSS BERGMAN EMAIL: RBERGMAN@HHOH.ORG

WATER: CITY OF HUBER HEIGHTS PHONE: (937) 233-1423 CONTACT: RUSS BERGMAN EMAIL: RBERGMAN@HHOH.ORG

STORMWATER: **CITY OF HUBER HEIGHTS** PHONE: (937) 233-1423 CONTACT: RUSS BERGMAN EMAIL: RBERGMAN@HHOH.ORG

ZONING: CITY OF HUBER HEIGHTS PHONE: (937) 237-5815 CONTACT: DON MILLARD EMAIL: DMILLARD@HHOH.ORG

PROPERTY DATA:

PARCEL OWNER:

PARCEL ID:

ADDRESS:

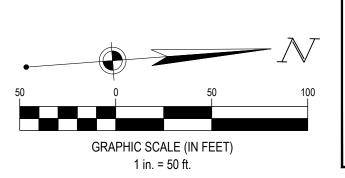
PROPERTY AREA:

ZONING:

PROPOSED USE:

PARKING: TOTAL PARKING SPACES: ADA PARKING SPACES:

FLOODPLAIN DESIGNATION:

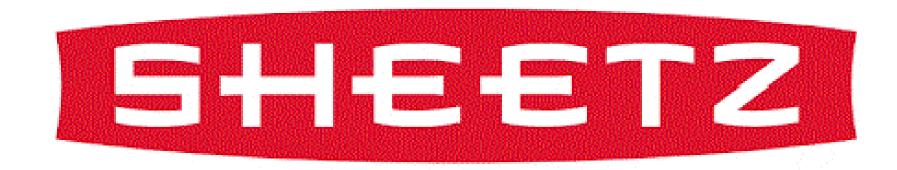

GAS SERVICE: CENTER POINT ENERGY PHONE: (937) 440-1830 CONTACT: RANDY CHECK

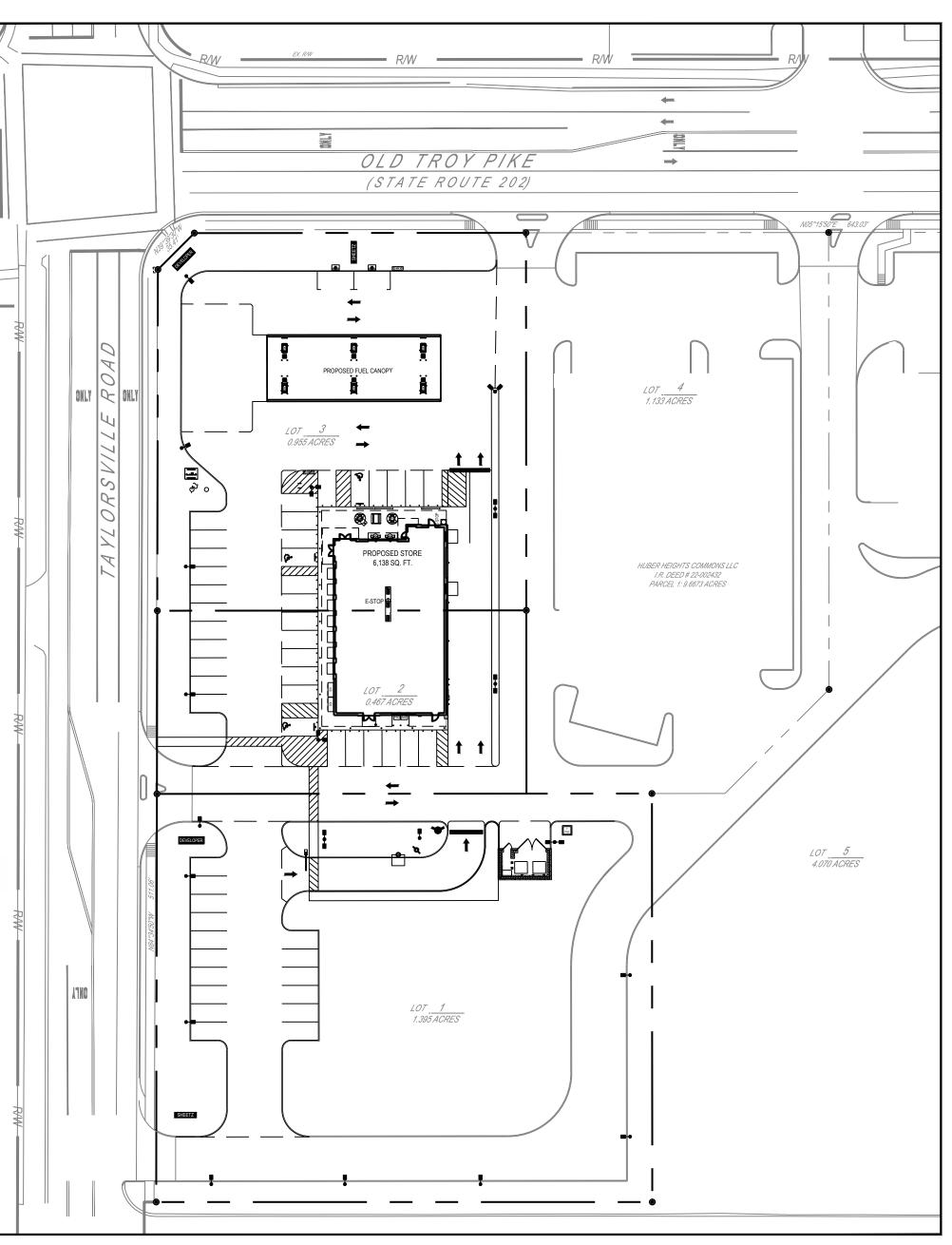
COMMUNICATIONS: SPECTRUM PHONE: (315) 234-7040

CONTACT: SHAQUILLE LEGGETT EMAIL: SHAQUILLE.LEGGETT@CHARTER.COM

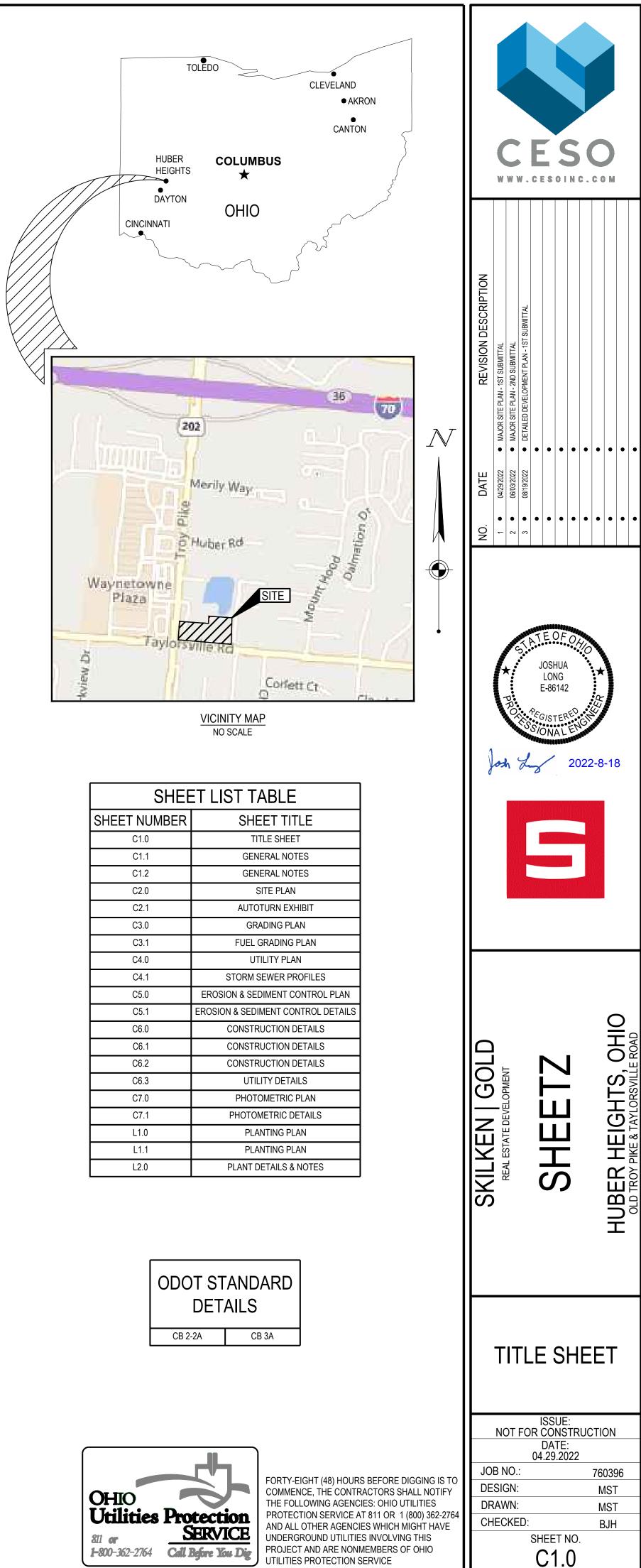
ELECTRIC: DAYTON POWER & LIGHT- AES OHIO PHONE: (937) 331-3900 (937) 331-4860 (CONSTRUCTION) EMAIL: AEESOHIOCONSTRUCTIONAPPS@AES.COM

HUBER HEIGHTS, OH 45424 PUD (MIXED USE PLANNED UNIT DEVELOPMENT) AUTOMOBILE SERVICE STATION AND CAR WASH


1


EX. R/W

CITY OF HUBER HEIGHTS, MONTGOMERY COUNTY, OHIO SITE IMPROVEMENTS



OLD TROY PIKE & TAYLORSVILLE ROAD HUBER HEIGHTS, OHIO 45424

INDEX MAP SCALE: 1" = 50'

Call Before You Dig W:\PROJECTS\SKILKEN GOLD\760396 SHEETZ - HUBER HEIGHTS, OH (TAYLORSVILLE RD)\03-CIVIL\PLAN\CONSTRUCTION\760396_C10-TITLE.DWG - 8/16/2022 2:11 PI

PROJECT AND ARE NONMEMBERS OF OHIO UTILITIES PROTECTION SERVICE

GENERAL NOTES

DEMOLITION NOTES

- THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING ALL PERMITS REQUIRED FOR DEMOLITION AND DISPOSAL. THE DEMOLITION, REMOVAL, AND DISPOSAL IS TO BE APPROVED BY ALL GOVERNING AUTHORITIES, OF ALL FACILITIES SUCH AS: STRUCTURES, PADS, WALLS, FLUMES, FOUNDATIONS. PARKING, DRIVES, DRAINAGE, STRUCTURES, UTILITIES, WELLS, ETC., SUCH THAT THE IMPROVEMENTS SHOWN ON THE REMAINING PLANS CAN BE CONSTRUCTED. ALL FACILITIES TO BE REMOVED SHALL BE UNDERCUT TO SUITABLE MATERIAL AND BROUGHT TO GRADE WITH SUITABLE COMPACTED FILL MATERIAL AS SPECIFIED BY A QUALIFIED PROFESSIONAL GEOTECHNICAL ENGINEER. IF UNDOCUMENTED FACILITIES ARE FOUND ON SITE, CONTRACTOR SHALL CONTACT THE OWNER AND UTILITY COMPANY PRIOR TO REMOVAL. ALL FACILITIES SHALL BE PLUGGED, ABANDONED, OR REMOVED PER STATE AND LOCAL REQUIREMENTS.
- FEDERAL, STATE AND LOCAL CODE REQUIREMENTS SHALL GOVERN THE DISPOSAL OF DEBRIS INCLUDING ANY POTENTIALLY HAZARDOUS AND TOXIC MATERIALS. ALL MATERIALS AND STRUCTURES DESIGNATED AS "TO BE REMOVED" SHALL BE DISPOSED OF OFF SITE AND AT THE COST OF THE CONTRACTOR.
- THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING JOB SITE SAFETY PER OSHA REQUIREMENTS AT ALL TIMES.
- PRIOR TO DEMOLITION, IT IS THE CONTRACTOR'S RESPONSIBILITY TO CALL THE STATE 811 AND NOTIFY ALL UTILITY COMPANIES TO SCHEDULE UTILITY SERVICE REMOVAL AND/OR ABANDONMENT. ALL UTILITIES SHALL BE REMOVED/RELOCATED PER THE SPECIFICATIONS OF THE UTILITY COMPANIES. THE 5. EXISTING AND PROPOSED GRADE CONTOUR INTERVALS ARE SHOWN AT 1 FOOT INTERVALS. CONTRACTOR IS RESPONSIBLE TO PAY ALL FEES AND CHARGES ASSOCIATED WITH THIS WORK
- CONTRACTOR SHALL MAINTAIN ALL UTILITY SERVICES TO INHABITED BUILDINGS ON SITE AND ADJACENT PROPERTIES AT ALL TIMES. INTERRUPTIONS SHALL BE APPROVED BY THE OWNERS OF THE BUILDINGS/PROPERTIES.
- THE LOCATIONS OF ALL EXISTING UTILITIES SHOWN ON THIS PLAN HAVE BEEN DETERMINED FROM THE BEST INFORMATION AVAILABLE AND ARE GIVEN FOR THE CONVENIENCE OF THE CONTRACTOR. THE ENGINEER ASSUMES NO RESPONSIBILITY FOR THEIR ACCURACY. PRIOR TO THE START OF ANY DEMOLITION ACTIVITY, THE CONTRACTOR SHALL NOTIFY THE UTILITY COMPANIES FOR ONSITE LOCATIONS OF EXISTING UTILITIES. IF THE LOCATION OR ELEVATION OF THE EXISTING UTILITIES ARE FOUND TO BE DIFFERENT FROM THE PLANS, CONTRACTOR SHALL CONTACT THE ENGINEER IMMEDIATELY.
- CONTRACTOR SHALL PROTECT EXISTING SITE FEATURES TO REMAIN INSIDE AND OUTSIDE CONSTRUCTION LIMITS. CONTRACTOR IS RESPONSIBLE TO DOCUMENT ALL EXISTING DAMAGES AND NOTIFY THE CITY/COUNTY PRIOR TO CONSTRUCTION START. ANY EXISTING SITE FEATURE TO REMAIN THAT IS DAMAGED DURING CONSTRUCTION, SUCH AS, BUT NOT LIMITED TO, DRAINAGE, UTILITIES, PAVEMENT, CURB, ETC. SHALL BE REPAIRED TO A CONDITION THAT IS EQUAL TO, OR BETTER THAN, THE EXISTING CONDITIONS. PRIOR TO BEING DAMAGED, THE CONTRACTOR IS RESPONSIBLE FOR REPAIRING ANY DAMAGE TO THE SATISFACTION OF THE OWNER AT NO ADDITIONAL COST.
- CONTINUOUS ACCESS SHALL BE MAINTAINED TO THE SURROUNDING PROPERTIES AT ALL TIMES DURING DEMOLITION OF THE EXISTING FACILITIES.
- THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING TRAFFIC CONTROL. ALL TRAFFIC CONTROL MEASURES SHALL BE IN ACCORDANCE WITH STATE DEPARTMENT OF TRANSPORTATION REGULATIONS AND LOCAL REGULATIONS.
- 10. THE CONTRACTOR IS RESPONSIBLE FOR PLACING AND MAINTAINING CONSTRUCTION FENCE, SIGNS, ETC. TO WARN AND KEEP UNAUTHORIZED PEOPLE OFF SITE FOR THE DURATION OF THE PROJECT.
- PRIOR TO DEMOLITION, ALL EROSION CONTROL DEVICES ARE TO BE INSTALLED PER THE GOVERNING AGENCIES GUIDELINES AND STANDARDS. DUST 11. CONTROL SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.
- SAWCUT LINE PROVIDED IS FOR REFERENCE ONLY. CONTRACTOR WILL BE RESPONSIBLE FOR DETERMINING THE EXTENT OF THE SAWCUT THAT WILL BE REQUIRED AS WELL AS PAVEMENT REPAIRS TO INSTALL UTILITY TRENCHING. IF ANY DAMAGE OCCURS ON ANY OF THE SURROUNDING PAVEMENT, ETC. 16. ALL STORM PIPE ENTERING STRUCTURES SHALL BE GROUTED TO ASSURE CONNECTION AT STRUCTURE IS SOIL TIGHT. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ITS REMOVAL AND REPAIR. THE CONTRACTOR IS RESPONSIBLE FOR REMOVING THAT WHICH IS NECESSARY TO COMPLETE THE INTENT OF THE PROPOSED IMPROVEMENTS. SAWCUT EXISTING PAVEMENT TO FULL DEPTH, USING CARE TO CUT NEAT, STRAIGHT LINES. CUT AT EXISTING JOINTS WHERE POSSIBLE.
- 13. THE CONTRACTOR SHALL MAINTAIN A WELL-DRAINED SITE, FREE OF STANDING WATER DURING CONSTRUCTION. THE CONTRACTOR SHALL BE RESPONSIBLE FOR TEMPORARY DRAINAGE MEASURES DURING CONSTRUCTION.
- IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO STUDY THE PLANS AND VISIT THE SITE TO DETERMINE THE ITEMS THAT MUST BE REMOVED TO COMPLY WITH THE SITE DEVELOPMENT PLANS. NO EXTRA FEE WILL BE PAID FOR THE REMOVAL OF ANY ITEM NOT LISTED THAT IS VISIBLE UPON A SITE VISIT. THE DEMOLITION PLAN IS INTENDED TO PRESENT THE SCOPE OF THE DEMOLITION. AND DOES NOT GUARANTEE THAT ALL ITEMS ARE ADDRESSED.
- THE CONTRACTOR SHALL OBTAIN ALL PERMITS FOR ALL SITE DEVELOPMENT WORK, PAY ALL FEES FOR PERMITS AND CHECK ALL GOVERNING 15. AUTHORITIES' SPECIFICATIONS FOR BUT NOT LIMITED TO, GUTTERS, SIDEWALKS, POLES, AND OTHER STRUCTURES, INCLUDING THE REMOVAL OR RELOCATION OF EXISTING UTILITIES OR OTHER PHYSICAL OBJECTS SHOWN ON PLANS OR NOTED OTHERWISE.
- THE CONTRACTOR SHALL CREATE AND IMPLEMENT AN EROSION AND SEDIMENTATION CONTROL PLAN FOR ALL SITE CONSTRUCTION ACTIVITIES ASSOCIATED WITH THE PROJECT. THE PLAN MUST CONFORM TO THE EROSION AND SEDIMENTATION REQUIREMENTS OF THE CONSTRUCTION GENERAL PERMIT OR LOCAL STANDARDS AND CODES. WHICHEVER IS MORE STRINGENT.
- 17. ALL COSTS FOR INSPECTIONS AND/OR TESTS SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR UNLESS NOTED OTHERWISE.

SITE NOTES

- ALL WORK AND MATERIALS SHALL COMPLY WITH ALL CITY/COUNTY REGULATIONS AND CODES AND O.S.H.A. STANDARDS.
- ALL MATERIAL NOTED ON DRAWINGS WILL BE SUPPLIED BY THE CONTRACTOR UNLESS OTHERWISE NOTED. 2.
- CONTRACTOR SHALL REFER TO THE ARCHITECTURAL PLANS TO COORDINATE ACCESS POINTS AND ELEVATIONS. REFER TO ARCHITECTURAL PLANS. FOR EXACT LOCATIONS AND DIMENSIONS OF DOORS, ENTRY RAMP, AND CANOPY,
- THE CONTRACTOR SHALL OBTAIN ALL PERMITS FOR ALL SITE DEVELOPMENT WORK, PAY ALL FEES FOR PERMITS AND CHECK ALL GOVERNING AUTHORITIES' SPECIFICATIONS FOR BUT NOT LIMITED TO, GUTTERS, SIDEWALKS, POLES, AND OTHER STRUCTURES, INCLUDING THE REMOVAL OR RELOCATION OF EXISTING UTILITIES OR OTHER PHYSICAL OBJECTS SHOWN ON PLANS OR NOTED OTHERWISE.
- THE CONTRACTOR SHALL CREATE AND IMPLEMENT AN EROSION AND SEDIMENTATION CONTROL PLAN FOR ALL SITE CONSTRUCTION ACTIVITIES ASSOCIATED WITH THE PROJECT. THE PLAN MUST CONFORM TO THE EROSION AND SEDIMENTATION REQUIREMENTS OF THE CONSTRUCTION GENERAL PERMIT OR LOCAL STANDARDS AND CODES, WHICHEVER IS MORE STRINGENT.
- ALL COSTS FOR INSPECTIONS AND/OR TESTS SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR UNLESS NOTED OTHERWISE. 6.
- ACCESSIBILITY STANDARDS SHALL BE IN ACCORDANCE WITH FEDERAL AND LOCAL REQUIREMENTS FOR HANDICAP ACCESSIBILITY, INCLUDING BUT NOT 7 LIMITED TO THE AMERICANS WITH DISABILITIES ACT ACCESSIBILITY GUIDELINES. ADA PARKING STALLS SHALL MEET ADA GRADE GUIDELINES. CONTRACTOR SHALL FIELD VERIFY EXISTING GRADES AT ACCESS POINTS, ACCESSIBLE ROUTES, AND EXISTING PARKING TO REMAIN TO DETERMINE COMPLIANCE WITH STANDARDS.
- ALL DISTURBED AREAS ARE TO RECEIVE 6" OF TOPSOIL, SEED, MULCH AND WATER UNTIL A HEALTHY STAND OF GRASS IS ESTABLISHED.
- ALL DIMENSIONS AND RADII ARE TO THE EDGE OF PAVEMENT OR FACE OF BUILDING, AS APPLICABLE, UNLESS OTHERWISE NOTED.
- 10. ALL CURB RADII ARE 5 FEET UNLESS OTHERWISE NOTED.
- 11. PROVIDE SIGNAGE AND STRIPING AS SHOWN. ALL SIGNAGE AND PAVEMENT MARKINGS SHALL COMPLY WITH THE GOVERNING MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (M.U.T.C.D.). PAVEMENT MARKINGS ON ASPHALT SHALL BE WHITE. PAVEMENT MARKINGS ON CONCRETE SHALL BE YELLOW.
- 12. REFER TO ARCHITECTURAL PLANS FOR PROPOSED BUILDING SIGNAGE.
- 13. REFER TO MECHANICAL PLANS FOR EQUIPMENT LAYOUT.
- 14. REFER TO ELECTRICAL PLANS FOR ELECTRICAL WORK.
- 15. REFER TO GEOTECHNICAL ENGINEERING REPORT FOR SITE WORK PREPARATION/RECOMMENDATIONS AND PAVEMENT SECTIONS.
- 16. ALL LIGHT POLES TO BE LOCATED 3' FROM THE BACK OF CURB, AS MEASURED FROM THE FACE OF POLE FOUNDATION, UNLESS OTHERWISE DENOTED ON PLANS.
- 17. REFER TO ORIGINAL SURVEY PROVIDED BY BURKHARDT.
- 18. EXISTING CONDITIONS BASED ON PLANS BY BURKHARDT, DATED 02/16/2022.
- 19. RECORD PLAN BY BURKHARDT, DATED 02/07/2022

GRADING NOTES

- 1. THE CONTRACTOR IS SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION OF EXISTING UTILITIES AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE VARIOUS UTILITY COMPANIES, AND WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE FIELD. THE INFORMATION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE CONTRACTOR MUST CALL THE APPROPRIATE UTILITY COMPANIES AT LEAST 72 HOURS BEFORE ANY EXCAVATION TO REQUEST EXACT FIELD LOCATION OF UTILITIES. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO RELOCATE ALL EXISTING UTILITIES WHICH CONFLICT WITH THE PROPOSED IMPROVEMENTS SHOWN ON THE PLANS.
- THE TOPOGRAPHIC SURVEY WAS PERFORMED BY A REGISTERED LAND SURVEYOR. IF CONTRACTOR DOES NOT ACCEPT EXISTING TOPOGRAPHY AS SHOWN ON THE PLANS, WITHOUT EXCEPTION, HE SHALL HAVE MADE, AT HIS EXPENSE, A TOPOGRAPHIC SURVEY BY A REGISTERED LAND SURVEYOR AND SUBMIT IT TO THE OWNER FOR REVIEW.
- 3. CONSTRUCTION SHALL COMPLY WITH ALL APPLICABLE GOVERNING CODES AND BE CONSTRUCTED TO SAME.
- 4. THE CONTRACTOR SHALL ADHERE TO ALL TERMS & CONDITIONS AS OUTLINED IN THE EPA OR APPLICABLE STATE GENERAL N.P.D.E.S. PERMIT FOR STORM WATER DISCHARGE ASSOCIATED WITH CONSTRUCTION ACTIVITIES.
- 6. ALL SPOT ELEVATIONS REFER TO FINISHED PAVEMENT ELEVATIONS UNLESS OTHERWISE NOTED.

- 10. EXISTING DRAINAGE STRUCTURES SHALL BE INSPECTED AND REPAIRED AS NEEDED, AND EXISTING PIPES ARE TO BE CLEANED TO REMOVE ALL SILT AND DEBRIS AFTER CONSTRUCTION IS COMPLETE.
- 11. IF ANY EXISTING STRUCTURES TO REMAIN ARE DAMAGED DURING CONSTRUCTION IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO REPAIR AND/OR REPLACE THE EXISTING STRUCTURE AS NECESSARY TO RETURN IT TO A CONDITION EQUAL TO OR BETTER THAN IT'S CONDITION PRIOR TO DAMAGE.

- 14. ALL WET, OR OTHERWISE UNSUITABLE SOILS MUST BE STABILIZED. THIS MAY BE ACCOMPLISHED BY DRYING, REMOVAL & REPLACEMENT, REMOVAL & DRYING & RECOMPACTION, OR SOIL TREATMENT (LIME/CEMENT) UNDER THE SUPERVISION OF A QUALIFIED PROFESSIONAL GEOTECHNICAL ENGINEER
- 15. ALL UNSURFACED AREAS, DISTURBED BY GRADING, OPERATION SHALL RECEIVE 6" OF TOPSOIL. CONTRACTOR SHALL APPLY STABILIZATION FABRIC TO ALL SLOPES 3H:1V OR STEEPER AND SEED WITH LOW MAINTENANCE GRASS SEED MIX. CONTRACTOR SHALL SEED DISTURBED AREAS IN ACCORDANCE WITH SPECIFICATIONS UNTIL A HEALTHY STAND OF GRASS IS OBTAINED. ALL EXPOSED SURFACE AREAS SHALL BE STABILIZED PER THE SWPPP AND LANDSCAPE REQUIREMENTS AS PART OF THIS PLAN SET.
- 17. ALL STORM STRUCTURES SHALL HAVE A SMOOTH UNIFORM POURED MORTAR INVERT FROM INVERT IN TO INVERT OUT

MATERIAL	TYPE	PIPE SPEC	JOINT SPEC	INSTALLATION	ACCEPTABLE AREAS OF USE
REINFORCED CONCRETE PIPE (RCP)	CLASS III, IV, V	ASTM C-76	ASTM C443	ASTM C1479	WITHIN R/W, COVER VARIES WITH PIPE CLASS
HIGH DENSITY POLY-ETHYLENE (HDPE)	SMOOTH-WALLED CORRUGATED ADS-N12 OR EQUAL	AASHTO M294 (TYPE S)	ASTM F477	ASTM D2321	ON SITE, 12" TO 60" DIA.
POLY VINYL CHLORIDE (PVC)	SDR 35	ASTM D3034	ASTM D3212	ASTM D2321	ON SITE, 4" TO 10"

- 21. ALL DOWNSPOUT DRAIN LINES OR ROOF LEADERS SHALL HAVE A 1.0% MINIMUM SLOPE, UNLESS OTHERWISE NOTED. CONNECT ALL DOWNSPOUTS AND ROOF LEADERS TO THE STORM SEWER SYSTEM. REFER TO ARCHITECTURAL PLANS FOR DOWNSPOUT AND ROOF LEADER LOCATIONS. PROVIDE POSITIVE DRAINAGE AND PAVEMENT REPAIR AS NEEDED.
- 22. ROOF DRAINS, FOUNDATION DRAINS, AND OTHER CLEAN WATER CONNECTIONS TO THE SANITARY SEWER SYSTEM ARE PROHIBITED.
- 23. THE STORM SEWER GRADE WILL BE SUCH THAT A MINIMUM COVER IS MAINTAINED TO WITHSTAND AASHTO HS-25 LOADING ON THE PIPE. PROVIDE MINIMUM 2.0 FEET OF COVER FOR ALL STORM SEWERS UNLESS OTHERWISE NOTED.
- 24. WHEN A SANITARY SEWER MAIN LIES ABOVE A STORM SEWER, OR WITHIN 18 INCHES BELOW, THE SANITARY SEWER WILL HAVE AN IMPERVIOUS ENCASEMENT OR BE CONSTRUCTED OF STRUCTURAL SEWER PIPE FOR A MINIMUM OF 10 FEET ON EACH SIDE OF WHERE THE STORM SEWER CROSSES. 25. IF EXISTING FIELD TILES ARE ENCOUNTERED DURING CONSTRUCTION THEY SHALL BE REPAIRED AND/OR TIED INTO A STORM SEWER SYSTEM AS NEEDED TO MAINTAIN POSITIVE DRAINAGE.

- 7. ALL ADA ACCESSIBLE PARKING SPACED AND LOADING AREAS SHALL BE GRADED WITH A 2.0% MAXIMUM SLOPE IN ALL DIRECTIONS. ALL ADA ACCESSIBLE ROUTES SHALL BE GRADED WITH A 2.0% MAXIMUM CROSS SLOPE AND 5.0% MAXIMUM RUNNING SLOPE.
 - MAINTAIN EXISTING DRAINAGE PATTERN THROUGHOUT THE SITE, EXCEPT WITHIN THE LIMITS OF DISTURBANCE (LOD).
- COORDINATE GRADES AT BUILDING ENTRIES WITH ARCHITECTURAL PLANS.
- CONTRACTOR SHALL ASSURE POSITIVE DRAINAGE AWAY FROM BUILDING AND WITHIN PAVED AREAS.
- 13. ALL TOPSOIL MUST BE REMOVED BEFORE FILL MATERIAL IS PLACED.
- 18. STORM PIPE SHALL BE AS FOLLOWS UNLESS OTHERWISE NOTED:

19. ALL STORM SEWER STRUCTURE GRATES AND FRAMES WITHIN PAVEMENT SHALL BE HEAVY DUTY.

20. ALL STORM DRAINAGE SHALL BE PERFORMED IN ACCORDANCE WITH ALL LOCAL COUNTY AND ODOT STANDARDS

UTILITY NOTES

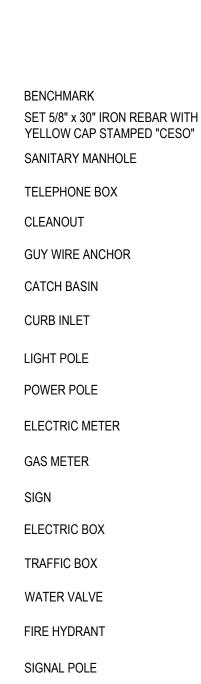
- THE CONTRACTOR IS SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION OF EXISTING UTILITIES AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE VARIOUS UTILITY COMPANIES, AND WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE FIELD. THE INFORMATION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE.
- 2. THE CONTRACTOR MUST CALL THE APPROPRIATE UTILITY COMPANIES AT LEAST 72 HOURS BEFORE ANY EXCAVATION TO REQUEST EXACT FIELD LOCATION OF UTILITIES. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO RELOCATE ALL EXISTING UTILITIES WHICH CONFLICT WITH THE PROPOSED IMPROVEMENTS SHOWN ON THE PLANS.
- CONTRACTOR SHALL COMPLY TO THE FULLEST EXTENT WITH THE LATEST STANDARDS OF O.S.H.A. DIRECTIVES OR ANY OTHER AGENCY HAVING 3 JURISDICTION FOR EXCAVATION AND TRENCHING PROCEDURES. THE CONTRACTOR SHALL USE SUPPORT SYSTEMS, SLOPING, BENCHING, AND OTHER MEANS OF PROTECTION. THIS TO INCLUDE BUT NOT LIMITED FOR ACCESS AND EGRESS FROM ALL EXCAVATION AND TRENCHING. CONTRACTOR IS RESPONSIBLE TO COMPLY WITH PERFORMANCE CRITERIA FOR O.S.H.A.
- CONTRACTOR IS RESPONSIBLE FOR REPAIRS OF DAMAGE TO ANY EXISTING UTILITY DURING CONSTRUCTION AT NO COST TO THE OWNER.
- 5. ALL FILL MATERIAL IS TO BE IN PLACE AND COMPACTED BEFORE INSTALLATION OF PROPOSED UTILITIES.
- CONTRACTOR SHALL COORDINATE WITH ALL UTILITY COMPANIES FOR INSTALLATION REQUIREMENTS AND SPECIFICATIONS. THE CONTRACTOR SHALL
- CONTRACTOR SHALL NOTIFY THE UTILITY AUTHORITY'S INSPECTORS 72 HOURS BEFORE CONNECTING TO ANY EXISTING LINE. 7.
- WATER AND SANITARY UTILITIES SHALL HAVE TEN (10') FEET OF HORIZONTAL CLEARANCE WHEN PARALLEL OR 18" VERTICAL CLEARANCE WHEN CROSSING. ALL CLEARANCE DISTANCES SHALL BE MEASURE FROM OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE. THE CROSSING SHALL BE ARRANGED SO THAT THE SANITARY SEWER JOINTS WILL BE EQUIDISTANT AND AS FAR AS POSSIBLE FROM THE WATER LINE JOINTS.
- IF A WATER LINE PASSES UNDER THE SANITARY SEWER LINE, THE SEWER LINE SHOULD BE CONSTRUCTED OF A WATERTIGHT MATERIAL APPROVED BY THE REGULATORY AGENCY FOR USE IN WATER MAIN CONSTRUCTION AND SHALL EXTEND TEN (10') FEET ON BOTH SIDES OF THE CROSSING, AS MEASURED PERPENDICULAR TO THE WATER LINES. ADEQUATE STRUCTURAL SUPPORT SHALL BE PROVIDED FOR THE SEWER TO MAINTAIN LINE AND GRADE
- UNDERGROUND LINES SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE BACKFILLING.
- 11. CONTRACTOR SHALL COORDINATE WITH ALL UTILITY COMPANIES FOR INSTALLATION REQUIREMENTS AND SPECIFICATIONS. THE CONTRACTOR SHALL CONDUCT ALL REQUIRED TESTS TO THE SATISFACTION OF THE RESPECTIVE UTILITY REGULATIONS AND THE OWNER'S INSPECTION AUTHORITIES.
- UTILITY TRENCHES WITHIN PAVED AREAS TO BE BACKFILLED PER UTILITY TRENCH DETAIL PROVIDED WITHIN THE CONSTRUCTION DETAILS SHEET 12
- 13. ALL WATER LINE WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE CITY HUBER HEIGHTS CONSTRUCTION STANDARDS AND STATE REGULATIONS.
- 14. INSTALL ALL WATER LINES WITH A MINIMUM COVER OF 4'-0".
- 15. ON-SITE WATER LINE MATERIAL SHALL BE AS FOLLOWS:

MATERIAL	PRESSURE RATING	PIPE SPEC	FITTINGS	INSTALLATION	ACCEPTABLE AREAS OF USE
HIGH-DENSITY POLY-ETHYLENE (HPDE TUBING)	SDR 9 P.C. = 250 PSI	ASTM D2239 AWWA C901 ASTM F714	ASTM D3350 ASTM D3261	ASTM D2774	ON SITE, < 3" DIA.
COPPER 1"-3"	TYPE "K"	ASTM B88	AWWA C800	AWWA C800	DOMESTIC WATERLINES 1"-3"
PE 4710 POLY-ETHYLENE PLASTIC (IPS)	SDR 11 P.C. = 200 PSI	ASTM D3035 AWWA C901	ASTM D3350 ASTM D3261	ASTM D2774	ON SITE, 2" TO 3" DIA.
P.V.C. POLY VINYL CHLORIDE 4"- 8" C900	C900	AWWA C901 (RATED DR 14)	ASTM F-477 ASTM D3139	AWWA C900 C651	ON SITE, 4"-8" WATER LINES & FIRE LINES INSTALL W/ TRACER & TAPE #12 COPPER
DUCTILE IRON PIPE 4"-12"	CLASS 52 P.C. = 350PSI	AWWA C104, C110, C151, C500	AWWA C111	AWWA C600, C651	6" FIRE HYDRANT LEADS
PE 4710 POLY-ETHYLENE PLASTIC (DIPS)	SDR 9 P.C. = 250 PSI	ASTM D2239 ASTM F714 AWWA C906	ASTM D3350 ASTM D3261	ASTM D2774	ON SITE, 4" DIA. AND LARGER

16. ON-SITE SANITARY SEWER LINE MATERIAL SHALL BE AS FOLLOWS:

MATERIAL	PRESSURE RATING	PIPE SPEC	FITTINGS	INSTALLATION	ACCEPTABLE AREAS OF USE
POLY VINYL CHLORIDE (PVC)	SDR 35	ASTM D3034	ASTM D3212	ASTM D2321 WITH TYPE 1 BEDDING	ON SITE, 6" TO 8" DIA., LESS THAN 8.5' OF COVER
POLY VINYL CHLORIDE (PVC)	SDR 26	ASTM 3034	ASTM D3212	ASTM 2321 WITH TYPE 1 BEDDING	ON SITE, 6" TO 8" DIA., GREATER THAN OR EQUAL TO 8.5' OF COVER

17. REFER TO ARCHITECTURAL DRAWINGS FOR EXACT BUILDING UTILITY CONNECTION LOCATIONS, SERVICE SIZES TO BE DETERMINED BY ARCHITECT.


- 18. CLEAN OUTS AND CURB BOXES WITHIN THE PAVED AREAS MUST HAVE TRAFFIC LOADING FRAMES AND COVERS.

CONDUCT ALL REQUIRED TESTS TO THE SATISFACTION OF THE RESPECTIVE UTILITY REGULATIONS AND THE OWNER'S INSPECTION AUTHORITIES.

LEGEND EXISTING FEATURES LEGEND APPLIES TO ALL CIVIL SHEETS

R/W	RIGHT OF WAY LINE	S
	PARCEL LINE	$\left[\right]$
	SUBJECT PROPERTY BOUNDARY LINE	0
	EASEMENT LINE	(—
	CURB	
	EDGE OF PAVEMENT	
	EDGE OF WALK	$\equiv \equiv$
	PAVEMENT MARKINGS	ϕ
STM	STORM SEWER	$\bar{\mathcal{O}}$
SAN	SANITARY SEWER	Ē
<i>W</i>	WATER LINE	GM
G	GAS LINE	6101
OHE	OVHD ELECTRIC LINE	d
UGE	UGND ELECTRIC LINE	\square
UGT	UGND TELECOMM LINE	
100 100	MAJOR CONTOUR	\otimes
102	MINOR CONTOUR	$\stackrel{+}{\frown}$
		\sim

	Ŵ			C I		0 1		G.				
REVISION DESCRIPTION	MAJOR SITE PLAN - 1ST SUBMITTAL	MAJOR SITE PLAN - 2ND SUBMITTAL	 DETAILED DEVELOPMENT PLAN - 1ST SUBMITTAL 	•			•	•	•	•	•	
NO. DATE	1 • 04/29/2022	2 • 06/03/2022	3 • 08/19/2022	•	•	•	•	•	•	•	•	•
SKILKEN LGOLD												OLD TROY PIKE & TAYLORSVILLE ROAD
D I I I I I I I I I I I I I I I I I I I												

W:\PROJECTS\SKILKEN GOLD\760396 SHEETZ - HUBER HEIGHTS, OH (TAYLORSVILLE RD)\03-CIVIL\PLAN\CONSTRUCTION\760396_C10-TITLE.DWG - 8/16/2022 2:

GENERAL NOTES

DEMOLITION NOTES:

- UTILITY NOTES: THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING ALL LOCAL AND STATE PERMITS REQUIRED FOR DEMOLITION WORK. THE CONTRACTOR SHALL INDEMNIFY AND HOLD HARMLESS THE OWNER AND/OR ENGINEER FOR ANY AND ALL INJURIES AND/OR DAMAGES TO PERSONNEL, EQUIPMENT AND/OR EXISTING FACILITIES IN THE DEMOLITION AND CONSTRUCTION DESCRIBED IN THE PLANS AND SPECIFICATIONS. LAWS. EXISTING CONDITIONS AS DEPICTED ON THESE PLANS ARE GENERAL AND ILLUSTRATIVE IN NATURE AND DO NOT INCLUDE MECHANICAL, ELECTRICAL 2 AND MISCELLANEOUS STRUCTURES. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO EXAMINE THE SITE AND BE FAMILIAR WITH EXISTING AND HEALTH. CONDITIONS PRIOR TO BIDDING ON THE DEMOLITION WORK FOR THIS PROJECT. IF CONDITIONS ENCOUNTERED DURING EXAMINATION ARE SIGNIFICANTLY DIFFERENT THAN THOSE SHOWN, THE CONTRACTOR SHALL NOTIFY THE ENGINEER IMMEDIATELY. ALL EXISTING ABOVE AND BELOW GROUND STRUCTURES WITHIN THE LIMITS OF NEW CONSTRUCTION SHALL BE RAZED UNLESS NOTED OTHERWISE 4 WITHIN THIS CONSTRUCTION SET, ARCHITECTURAL PLANS AND/OR PROJECT SPECIFICATIONS. THIS INCLUDES FOUNDATION SLABS, WALLS, AND FOOTINGS. 4 ALL DEMOLITION WASTE AND CONSTRUCTION DEBRIS SHALL BE REMOVED BY THE CONTRACTOR AND DISPOSED OF IN A STATE APPROVED WASTE SITE 5. AND IN ACCORDANCE WITH ALL LOCAL AND STATE CODES AND PERMIT REQUIREMENTS. 5. 6. ALL UTILITY REMOVAL, RELOCATION, CUTTING, CAPPING AND/OR ABANDONMENT SHALL BE COORDINATED WITH THE APPROPRIATE UTILITY COMPANY. AND REGULATIONS. THE BURNING OF CLEARED MATERIAL AND DEBRIS SHALL NOT BE ALLOWED UNLESS CONTRACTOR GETS WRITTEN AUTHORIZATION FROM THE LOCAL AUTHORITIES. 8. UTILITY CONTACTS ARE LISTED ON THE TITLE SHEET. EROSION AND SEDIMENTATION CONTROL MEASURES AROUND AREAS OF DEMOLITION SHALL BE INSTALLED PRIOR TO INITIATION OF DEMOLITION ACTIVITIES. REFER TO E&S PLAN FOR DETAILS. 10. ASBESTOS OR HAZARDOUS MATERIALS, IF FOUND ON SITE, SHALL BE REMOVED BY A LICENSED HAZARDOUS MATERIALS CONTRACTOR. CONTRACTOR CONTRACTOR OR NOT. SHALL NOTIFY OWNER IMMEDIATELY IF HAZARDOUS MATERIALS ARE ENCOUNTERED. 11. CONTRACTOR SHALL PROTECT ALL CORNER PINS, MONUMENTS, PROPERTY CORNERS, AND BENCHMARKS DURING DEMOLITION ACTIVITIES. IF COMPLETION OF THE PROJECT. DISTURBED, CONTRACTOR SHALL HAVE DISTURBED ITEMS RESET BY A LICENSED SURVEYOR AT NO ADDITIONAL COST TO THE OWNER. 12. CONTRACTOR SHALL ADHERE TO ALL LOCAL, STATE, FEDERAL, AND OSHA REGULATIONS WHEN OPERATING DEMOLITION EQUIPMENT AROUND UTILITIES. 13. CONTRACTOR SHALL PROVIDE AND MAINTAIN TRAFFIC CONTROL MEASURES IN ACCORDANCE WITH THE (LIST HIGHWAY DEPARTMENT)STANDARDS, AND AS REQUIRED BY LOCAL AGENCIES WHEN WORKING IN AND/OR ALONG STREETS, ROADS, HIGHWAYS, ETC. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO OBTAIN APPROVAL AND COORDINATE WITH LOCAL AND/OR STATE AGENCIES REGARDING THE NEED, EXTENT, AND LIMITATIONS ASSOCIATED WITH INSTALLING AND MAINTAINING TRAFFIC CONTROL MEASURES. 14. CONTRACTOR SHALL PROTECT AT ALL TIMES ADJACENT STRUCTURES AND ITEMS FROM DAMAGE DUE TO DEMOLITION ACTIVITIES. 15. DEMOLITION CONTRACTOR SHALL COORDINATE EXISTING FACILITIES UTILITY DISCONNECTS WITH THE CONSTRUCTION REPRESENTATIVE A MINIMUM 7 DAYS PRIOR TO ANTICIPATED DEMOLITION OF STRUCTURES. LAYOUT NOTES: 16. CONTRACTOR SHALL REFER TO OTHER PLANS WITHIN THIS CONSTRUCTION SET FOR OTHER PERTINENT INFORMATION. **GRADING NOTES:** ALL SITE WORK SHALL BE DONE IN ACCORDANCE WITH THE PLANS PREPARED BY CESO. THE CURRENT REQUIREMENTS OF THE CITY OF HUBER HEIGHTS, 1. 2 THE APPLICABLE SECTIONS OF THE ODOT STANDARD SPECIFICATIONS FOR ROADWAY CONSTRUCTION, AND ALL OTHER PERTINENT FEDERAL AND STATE LAWS. 3. CONSTRUCTION PLANS. 2. THE CONTRACTOR SHALL COMPLY AT ALL TIMES WITH APPLICABLE FEDERAL, STATE AND LOCAL LAWS, PROVISIONS, AND POLICIES GOVERNING SAFETY AND HEALTH. THE CONTRACTOR SHALL BE RESPONSIBLE FOR EXAMINING THE AREAS AND CONDITIONS UNDER WHICH THE PROJECT IS TO BE CONSTRUCTED PRIOR TO THE SUBMISSION OF A BID. SUBMISSION OF A BID SHALL BE CONSTRUED TO MEAN THE CONTRACTOR HAS REVIEWED THE SITE AND IS FAMILIAR WITH CONDITIONS AND CONSTRAINTS OF THE SITE. BEFORE EXCAVATION, ALL UNDERGROUND UTILITIES SHALL BE LOCATED IN THE FIELD BY THE PROPER AUTHORITIES. THE CONTRACTOR SHALL NOTIFY 4 OUPS. THE LOCATION OF ALL UTILITIES AND UNDERGROUND STRUCTURES ARE APPROXIMATE AND MAY NOT ALL BE SHOWN. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO DETERMINE THE EXISTENCE AND EXACT LOCATION OF ALL UTILITIES AND UNDERGROUND STRUCTURES. ALL EXISTING TREES, VEGETATION, PAVEMENTS, CONCRETE FOUNDATIONS, STRUCTURES AND ORGANIC TOPSOIL SHALL BE STRIPPED AND REMOVED 5. FROM NEW CONSTRUCTION AREAS UNLESS NOTED OTHERWISE. ALL SLOPES SHALL BE 2:1 (HORIZONTAL: VERTICAL) MAXIMUM UNLESS NOTED OTHERWISE. ALL SLOPES GREATER THAN 3:1 TO PERMANENTLY 6. STABILIZED WITH LANDSCAPE PLANTS. 7. AN AS-BUILT DRAWING OF NEW UTILITY SERVICES MUST BE PREPARED BY THE CONTRACTOR AND SUBMITTED TO THE OWNER UPON COMPLETION OF THE PROJECT.
- ALL AREAS NOT PAVED SHALL BE TOP SOILED, SEEDED, MULCHED OR LANDSCAPED UNLESS OTHERWISE NOTED IN THE CONSTRUCTION DRAWINGS, SITE 8. SPECIFICATIONS OR INSTRUCTED BY THE OWNER.
- 9. CONTRACTOR SHALL REFER TO THE GEOTECHNICAL REPORT PRIOR TO INITIATION OF ANY EARTHWORK ACTIVITY.
- 10. CONTRACTOR SHALL REFER TO OTHER PLANS WITHIN THIS CONSTRUCTION SET FOR OTHER PERTINENT INFORMATION.

STORMWATER MANAGEMENT NOTES:

- ALL SITE WORK SHALL BE DONE IN ACCORDANCE WITH THE PLANS PREPARED BY CESO. THE CURRENT REQUIREMENTS OF THE CITY OF HUBER HEIGHTS. 1. THE APPLICABLE SECTIONS OF THE ODOT STANDARD SPECIFICATIONS FOR ROADWAY CONSTRUCTION, AND ALL OTHER PERTINENT FEDERAL AND STATE LAWS.
- THE CONTRACTOR SHALL COMPLY AT ALL TIMES WITH APPLICABLE FEDERAL, STATE AND LOCAL LAWS, PROVISIONS, AND POLICIES GOVERNING SAFETY 2. AND HEALTH.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR EXAMINING THE AREAS AND CONDITIONS UNDER WHICH THE PROJECT IS TO BE CONSTRUCTED PRIOR TO THE SUBMISSION OF A BID. SUBMISSION OF A BID SHALL BE CONSTRUED TO MEAN THE CONTRACTOR HAS REVIEWED THE SITE AND IS FAMILIAR WITH CONDITIONS AND CONSTRAINTS OF THE SITE.
- 4. BEFORE EXCAVATION, ALL UNDERGROUND UTILITIES SHALL BE LOCATED IN THE FIELD BY THE PROPER AUTHORITIES. THE CONTRACTOR SHALL NOTIFY OUPS. THE LOCATION OF ALL UTILITIES AND UNDERGROUND STRUCTURES ARE APPROXIMATE AND MAY NOT ALL BE SHOWN. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO DETERMINE THE EXISTENCE AND EXACT LOCATION OF ALL UTILITIES AND UNDERGROUND STRUCTURES.
- CONTRACTOR SHALL COORDINATE PUMP ISLAND CANOPY DRAINS CONNECTION TO THE MAIN COLLECTOR PIPE WITH OWNER AND PROVIDE ALL NECESSARY FITTINGS TO MAKE THE CONNECTION TO THE MAIN COLLECTOR PIPE.
- 6. CONTRACTOR TO PROVIDE SHOP DRAWINGS ON ALL STORM SEWER MANHOLES AND INLETS.
- AN AS-BUILT DRAWING OF NEW UTILITY SERVICES SHALL BE PREPARED BY THE CONTRACTOR AND SUBMITTED TO THE OWNER UPON COMPLETION OF 7 THE PROJECT.
- 8. ALL STORM PIPE SHALL BE AS SPECIFIED. ALL JOINTS SHALL BE WATERTIGHT.
- 9. CONTRACTOR SHALL REFER TO OTHER PLANS WITHIN THIS CONSTRUCTION SET FOR OTHER PERTINENT INFORMATION.

1. ALL SITE WORK SHALL BE DONE IN ACCORDANCE WITH THE PLANS PREPARED BY CESO, THE CURRENT REQUIREMENTS OF THE CITY OF HUBER HEIGHTS, THE APPLICABLE SECTIONS OF THE ODOT STANDARD SPECIFICATIONS FOR ROADWAY CONSTRUCTION, AND ALL OTHER PERTINENT FEDERAL AND STATE

THE CONTRACTOR SHALL COMPLY AT ALL TIMES WITH APPLICABLE FEDERAL, STATE AND LOCAL LAWS, PROVISIONS, AND POLICIES GOVERNING SAFETY

THE CONTRACTOR SHALL BE RESPONSIBLE FOR EXAMINING THE AREAS AND CONDITIONS UNDER WHICH THE PROJECT IS TO BE CONSTRUCTED PRIOR TO THE SUBMISSION OF A BID. SUBMISSION OF A BID SHALL BE CONSTRUED TO MEAN THE CONTRACTOR HAS REVIEWED THE SITE AND IS FAMILIAR WITH CONDITIONS AND CONSTRAINTS OF THE SITE.

BEFORE EXCAVATION, ALL UNDERGROUND UTILITIES SHALL BE LOCATED IN THE FIELD BY THE PROPER AUTHORITIES. THE CONTRACTOR SHALL NOTIFY OUPS. THE LOCATION OF ALL UTILITIES AND UNDERGROUND STRUCTURES ARE APPROXIMATE AND MAY NOT ALL BE SHOWN. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO DETERMINE THE EXISTENCE AND EXACT LOCATION OF ALL UTILITIES AND UNDERGROUND STRUCTURES.

IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO BID AND PERFORM ALL UTILITY WORK IN COMPLIANCE TO ALL APPLICABLE LOCAL AND STATE CODES

THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL FEES ASSOCIATED WITH THE INSTALLATION, INSPECTING, TESTING AND FINAL ACCEPTANCE OF ALL PROPOSED UTILITIES CONSTRUCTION.

7. CONTRACTOR SHALL COORDINATE WITH THE APPROPRIATE UTILITY COMPANY ON THE ADDITION, REMOVAL AND/OR RELOCATION OF UTILITIES AND UTILITY POLES AND THE EXTENSION OF ALL PROPOSED UTILITIES TO PROPOSED STORE AND CAR WASH.

8. ALL UTILITIES SHALL BE INSTALLED IN ACCORDANCE WITH THE SPECIFICATIONS OF THE RESPECTIVE UTILITY COMPANY. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO ENSURE ALL UTILITIES ARE INSTALLED CORRECTLY TO MEET PROJECT REQUIREMENTS WHETHER PERFORMED BY THE

9. AN AS-BUILT DRAWING OF NEW UTILITY SERVICES SHALL BE PREPARED BY THE CONTRACTOR AND SUBMITTED TO THE STORE OWNER UPON

10. UTILITY COMPANIES AND CONTACTS ARE LISTED ON THE TITLE SHEET.

11. CONDUIT LOCATIONS TO PYLON SIGNS AND SITE LIGHT POLES TO BE COORDINATED WITH SUPERINTENDENT.

12. CONTRACTOR SHALL COORDINATE WITH SUPERINTENDENT ON LOCATION AND SIZE OF THE GREASE TRAP. GREASE TRAP SHALL BE PROVIDED WITH "T" PIPE IN OUTFLOW CHAMBER. ALL SANITARY SEWER PIPE SHALL BE SDR-35 PVC UNLESS OTHERWISE NOTED.

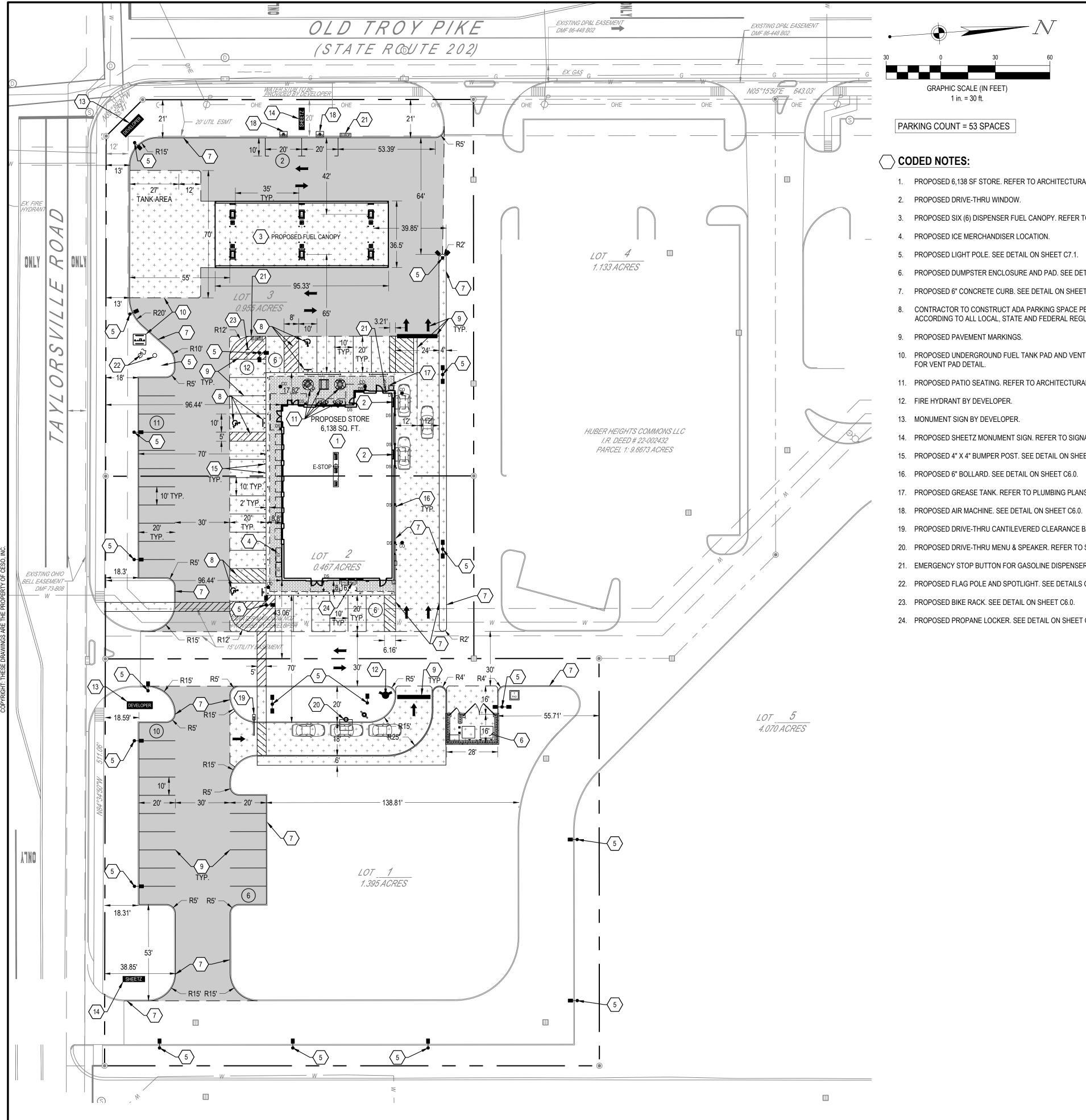
13. CONTRACTOR SHALL COORDINATE WITH STORE OWNER ON CONDUIT ROUTE TO STORE FROM THE TRANSFORMER AND/OR SERVICE UTILITY POLE FOR TELEPHONE AND ELECTRICAL SERVICE.

14. CONTRACTOR SHALL REFER TO OTHER PLANS WITHIN THIS CONSTRUCTION SET FOR OTHER PERTINENT INFORMATION.

1. CONTRACTOR SHALL REFER TO THE ARCHITECTURAL PLANS FOR THE EXACT LOCATION OF UTILITY ENTRANCES, BUILDING DIMENSIONS, ROOF LEADERS, EXIT DOORS, EXIT RAMPS AND PORCHES.

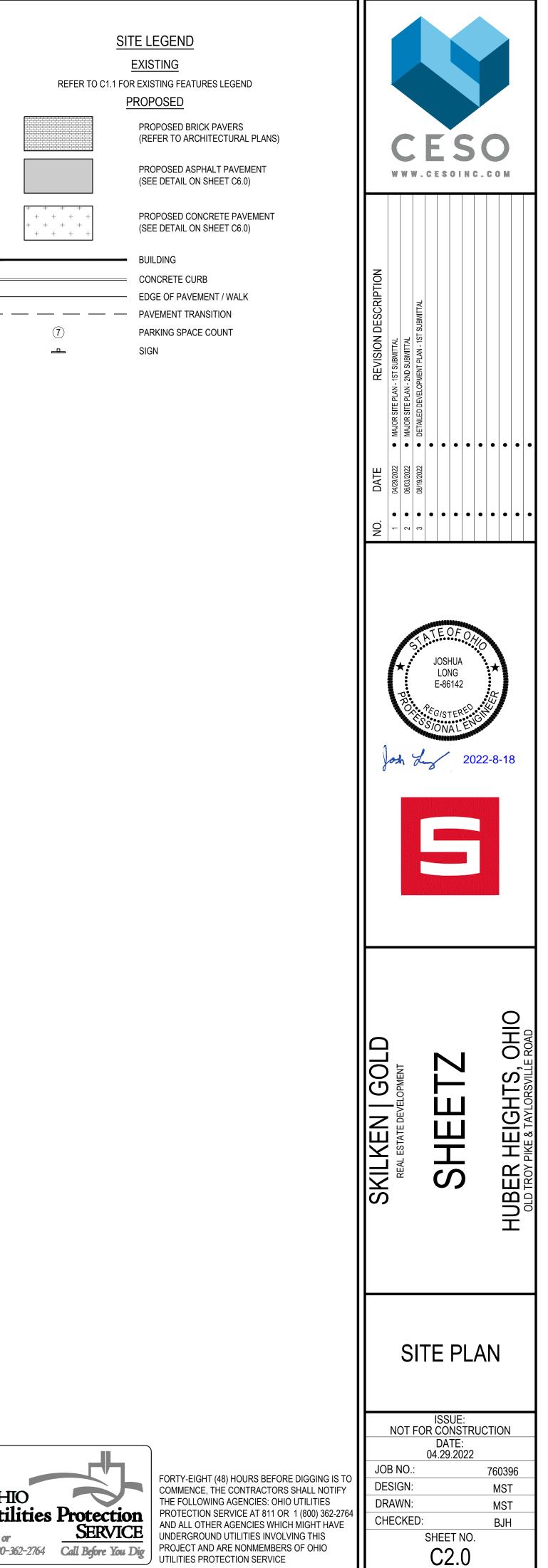
ALL DIMENSIONS ARE TO BUILDING FACE, FACE OF CURB OR EDGE OF SIDEWALK UNLESS NOTED OTHERWISE.

CONTRACTOR SHALL PROVIDE ALL LABOR AND MATERIALS FOR THE INSTALLATION OF TRAFFIC SIGNAGE AND PAVEMENT MARKINGS AS SHOWN ON THE

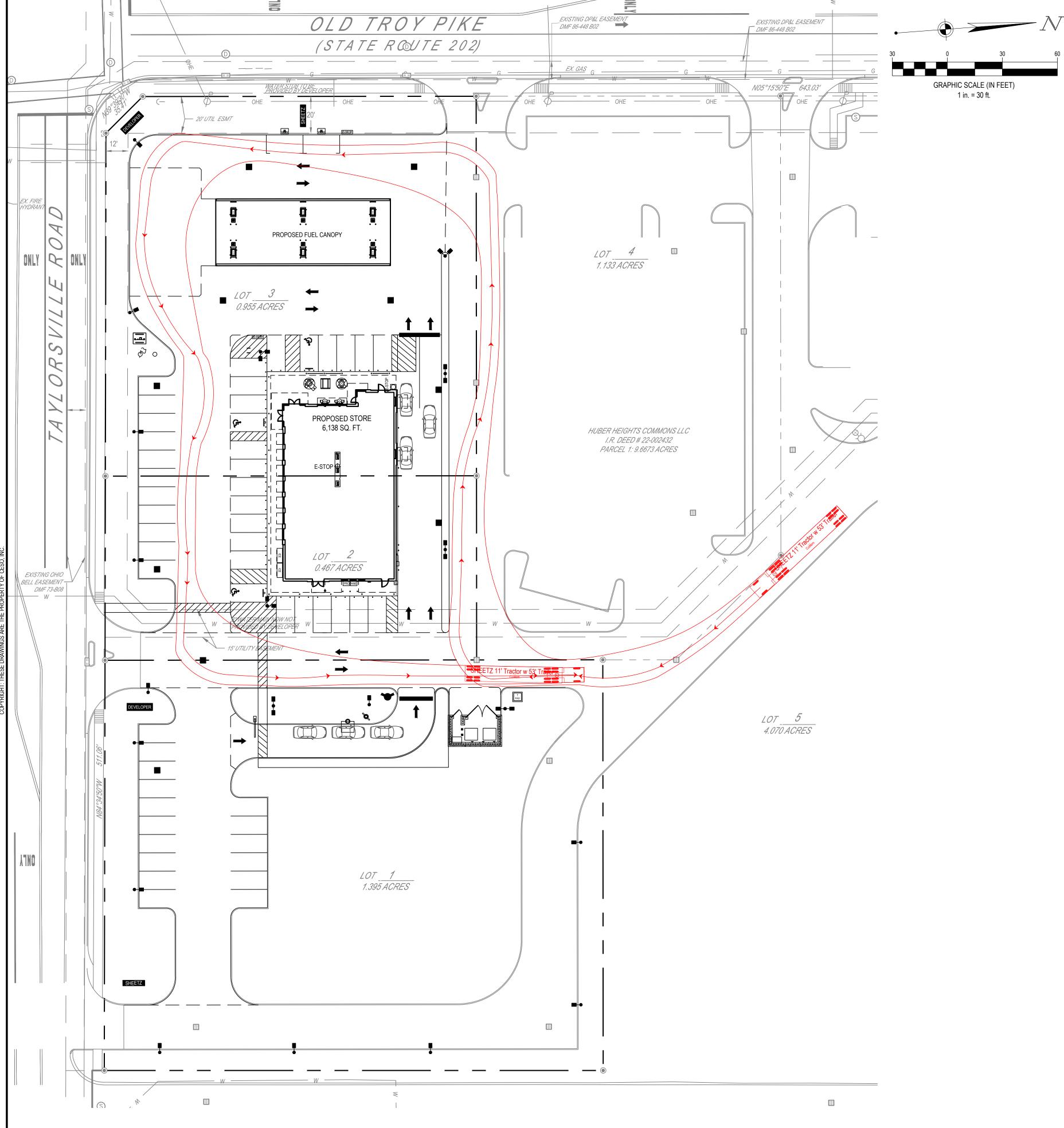

4. ALL NON-LANDSCAPED ISLANDS SHALL BE PAINTED WITH STRIPES 4" WIDE, AT 45° AND 2 FEET O.C.

ALL STRIPING SHALL BE 4" WIDE UNLESS NOTED OTHERWISE.

6. CONTRACTOR SHALL COORDINATE FINAL LOCATION OF THE PYLON SIGN WITH STORE OWNER.


7. CONTRACTOR SHALL REFER TO OTHER PLANS WITHIN THIS CONSTRUCTION SET FOR OTHER PERTINENT INFORMATION.

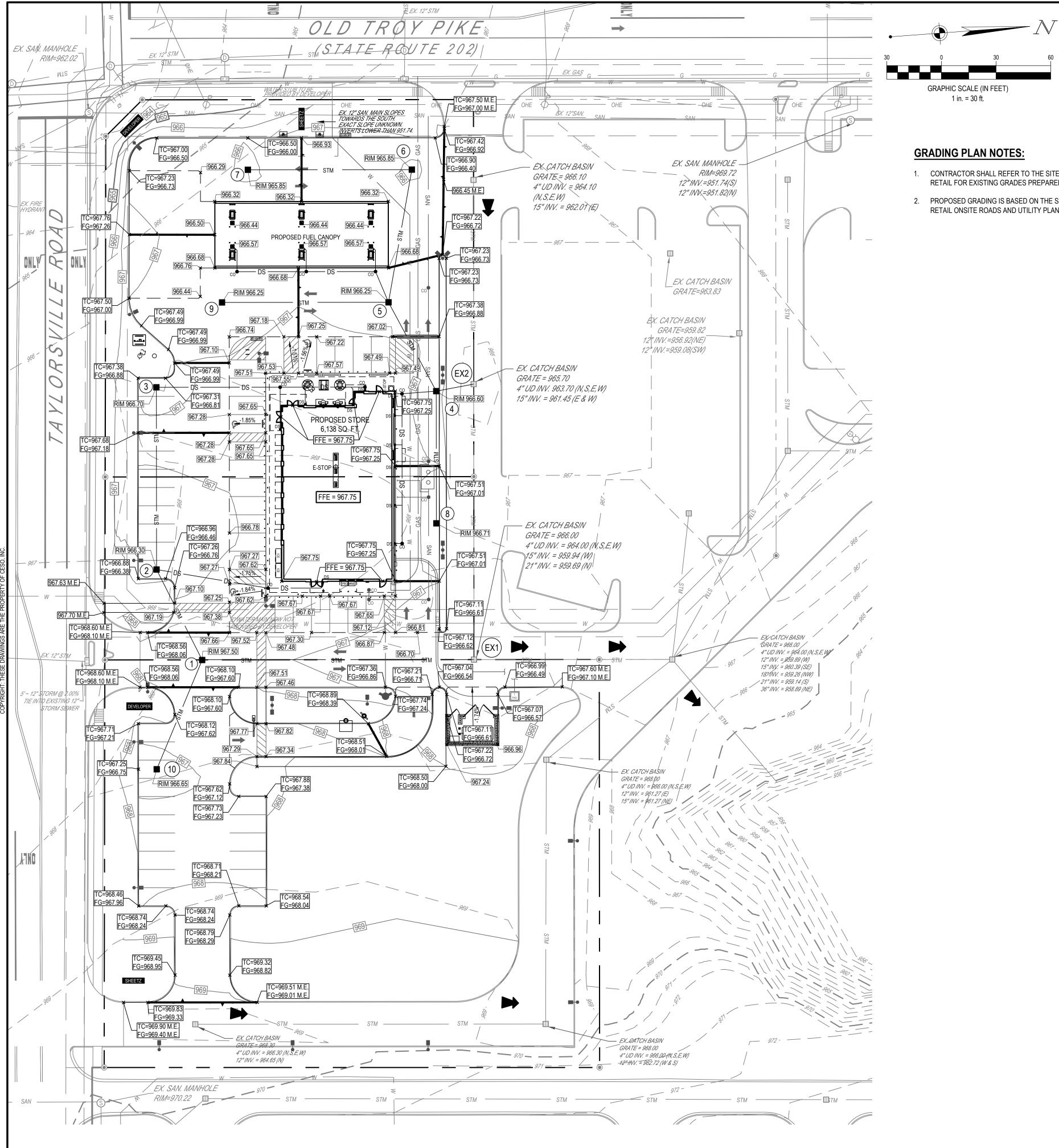
	NO DIE RUSION DESCRIPTION NO DIE DIE DIE DIE </th
	SKILKEN GOLD REAL ESTATE DEVELOPMENT BABEETZ BABEETZ OLD TROY PIKE & TAYLORSVILLE ROAD
W:PROJECTS\SKILKEN GOLD\760396 SHEETZ - HUBER HEIGHTS, OH (TAYLORSVILLE RD)\03-CIVIL\PLANCO	ISSUE: NOT FOR CONSTRUCTION DATE: 04.29.2022 JOB NO.: 760396 DESIGN: MST DRAWN: MST CHECKED: BJH SHEET NO. C1.2


- 1. PROPOSED 6,138 SF STORE. REFER TO ARCHITECTURAL PLANS.
- 3. PROPOSED SIX (6) DISPENSER FUEL CANOPY. REFER TO ARCHITECTURAL PLANS.
- 5. PROPOSED LIGHT POLE. SEE DETAIL ON SHEET C7.1.
- 6. PROPOSED DUMPSTER ENCLOSURE AND PAD. SEE DETAIL ON SHEET C6.1.
- 7. PROPOSED 6" CONCRETE CURB. SEE DETAIL ON SHEET C6.2.
- 8. CONTRACTOR TO CONSTRUCT ADA PARKING SPACE PER DETAIL ON SHEET C6.2 AND ACCORDING TO ALL LOCAL, STATE AND FEDERAL REGULATIONS.
- 10. PROPOSED UNDERGROUND FUEL TANK PAD AND VENT PAD. SEE DETAIL ON SHEET C6.0
- 11. PROPOSED PATIO SEATING. REFER TO ARCHITECTURAL PLANS.

- 14. PROPOSED SHEETZ MONUMENT SIGN. REFER TO SIGNAGE PLAN.
- 15. PROPOSED 4" X 4" BUMPER POST. SEE DETAIL ON SHEET C6.0.
- 16. PROPOSED 6" BOLLARD. SEE DETAIL ON SHEET C6.0.
- 17. PROPOSED GREASE TANK. REFER TO PLUMBING PLANS.
- 19. PROPOSED DRIVE-THRU CANTILEVERED CLEARANCE BAR. REFER TO SIGNAGE PLAN.
- 20. PROPOSED DRIVE-THRU MENU & SPEAKER. REFER TO SIGNAGE PLAN.
- 21. EMERGENCY STOP BUTTON FOR GASOLINE DISPENSERS. SEE DETAIL ON SHEET C6.1.
- 22. PROPOSED FLAG POLE AND SPOTLIGHT. SEE DETAILS ON SHEET C6.1.
- 23. PROPOSED BIKE RACK. SEE DETAIL ON SHEET C6.0.
- 24. PROPOSED PROPANE LOCKER. SEE DETAIL ON SHEET C6.1.

W:\PROJECTS\SKILKEN GOLD\760396 SHEETZ - HUBER HEIGHTS, OH (TAYLORSVILLE RD)\03-CIVIL\PLAN\CONSTRUCTION\760396_C30-SITE.DWG - 8/16/2022 2:12 F

OHIO Utilities	Protection
811 or	SERVICE
1-800-362-2764	Call Before You Dig



W:\PROJECTS\SKILKEN GOLD\760396 SHEETZ - HUBER HEIGHTS, OH (TAYLORSVILLE RD)\03-CIVIL\PLAN\CONSTRUCTION\760396_C30-SITE.DWG - 8/16/2022 2:12 PI

SITE LEGEND

EXISTING

REFER TO C1.1 FOR EXISTING FEATURES LEGEND PROPOSED BUILDING CONCRETE CURB - EDGE OF PAVEMENT / WALK ----- PAVEMENT TRANSITION

- 1. CONTRACTOR SHALL REFER TO THE SITE DEVELOPMENT PLANS FOR HUBER HEIGHTS COMMON BROAD REACH RETAIL FOR EXISTING GRADES PREPARED BY BURKHARDT.
- 2. PROPOSED GRADING IS BASED ON THE SITE DEVELOPMENT PLANS FOR HUBER HEIGHTS COMMON BROAD REACH RETAIL ONSITE ROADS AND UTILITY PLANS PREPARED BY BURKHARDT.

GRADING LEGEND

<u>EXISTING</u> REFER TO C1.1 FOR EXISTING FEATURES LEGEND

PROPOSED

MINOR CONTOUR

GRADE BREAK

CATCH BASIN

CLEANOUT

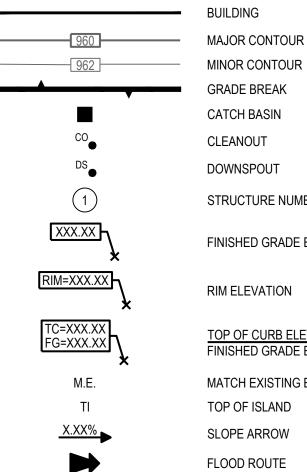
DOWNSPOUT

RIM ELEVATION

TOP OF ISLAND

SLOPE ARROW

FLOOD ROUTE


STRUCTURE NUMBER

FINISHED GRADE ELEVATION

TOP OF CURB ELEVATION

FINISHED GRADE ELEVATION

MATCH EXISTING ELEVATION

O	SKILKEN I GOLD	J	NO. DATE REVISION DESCRIPTION	
			1 O4/29/2022 MAJOR SITE PLAN - 15T SUBMITTAL	Ŵ
DT		A A A A A A A A A A A A A A A A A A A	2 ● 06/03/2022 ● MAJOR SITE PLAN - 2ND SUBMITTAL	
FO		m	3 ● 08/19/2022 ● DETAILED DEVELOPMENT PLAN - 1ST SUBMITTAL	
I R (ا ۶ ۵	•	E
SS		E (OSI LOI E-86	•	5
UE NS TE		NG 3142	•	01
TR		EDEN	•	S N
UC			•	G .
CTI		2-8	•	
A		-18	•	
		3	•	
	OLD TROY PIKE & TAYLORSVILLE ROAD		•	

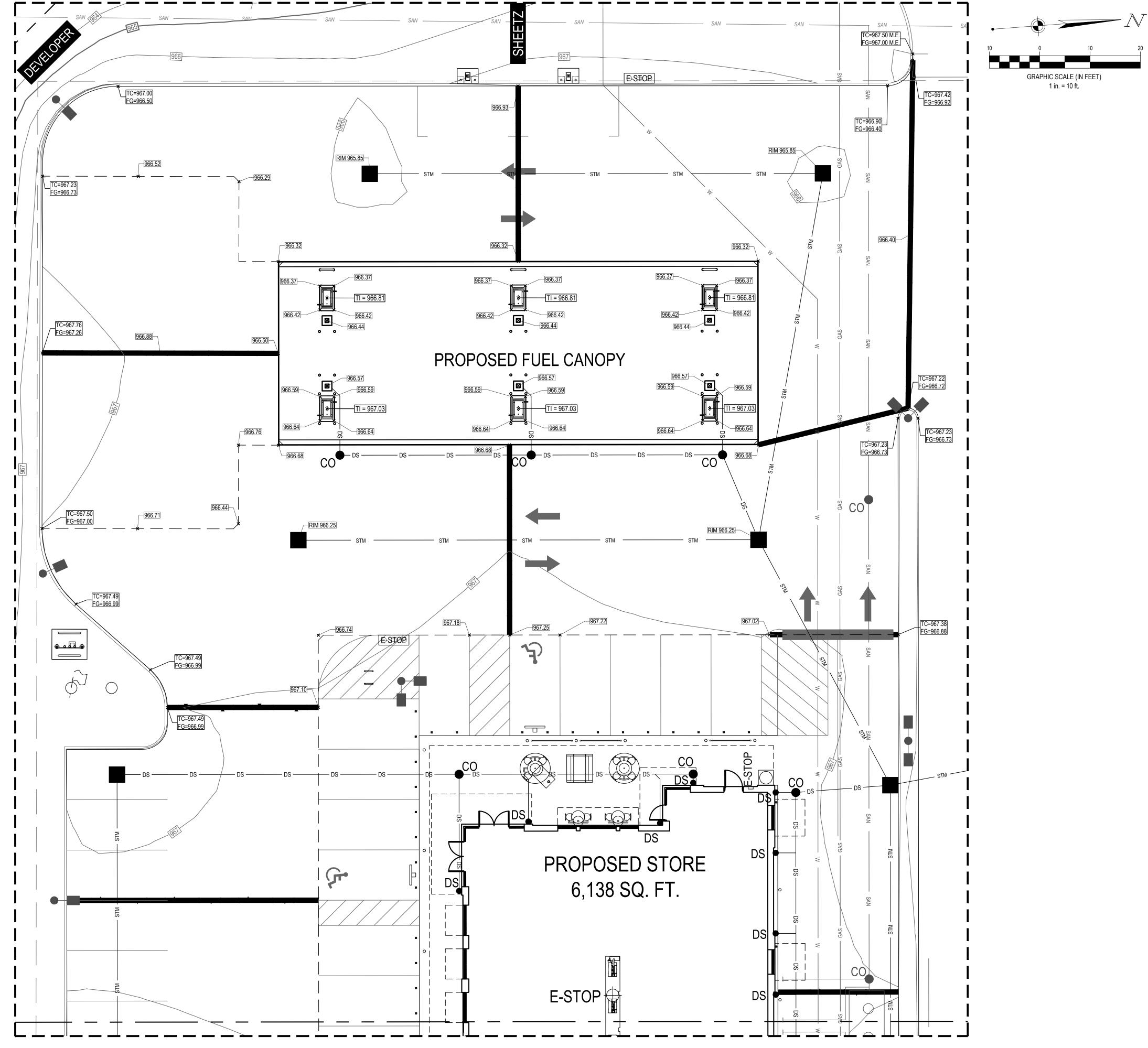
FORTY-EIGHT (48) HOURS BEFORE DIGGING IS T COMMENCE, THE CONTRACTORS SHALL NOTIFY THE FOLLOWING AGENCIES: OHIO UTILITIES PROTECTION SERVICE AT 811 OR 1 (800) 362-276 AND ALL OTHER AGENCIES WHICH MIGHT HAVE UNDERGROUND UTILITIES INVOLVING THIS PROJECT AND ARE NONMEMBERS OF OHIO UTILITIES PROTECTION SERVICE

DESIGN:

DRAWN:

CHECKED:

SHEET NO.


C3.0

760396

MST

MST

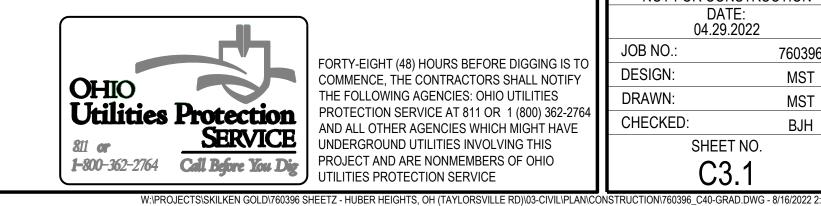
BJH

GRADING LEGEND

EXISTING REFER TO C1.1 FOR EXISTING FEATURES LEGEND

PROPOSED

STRUCTURE NUMBER

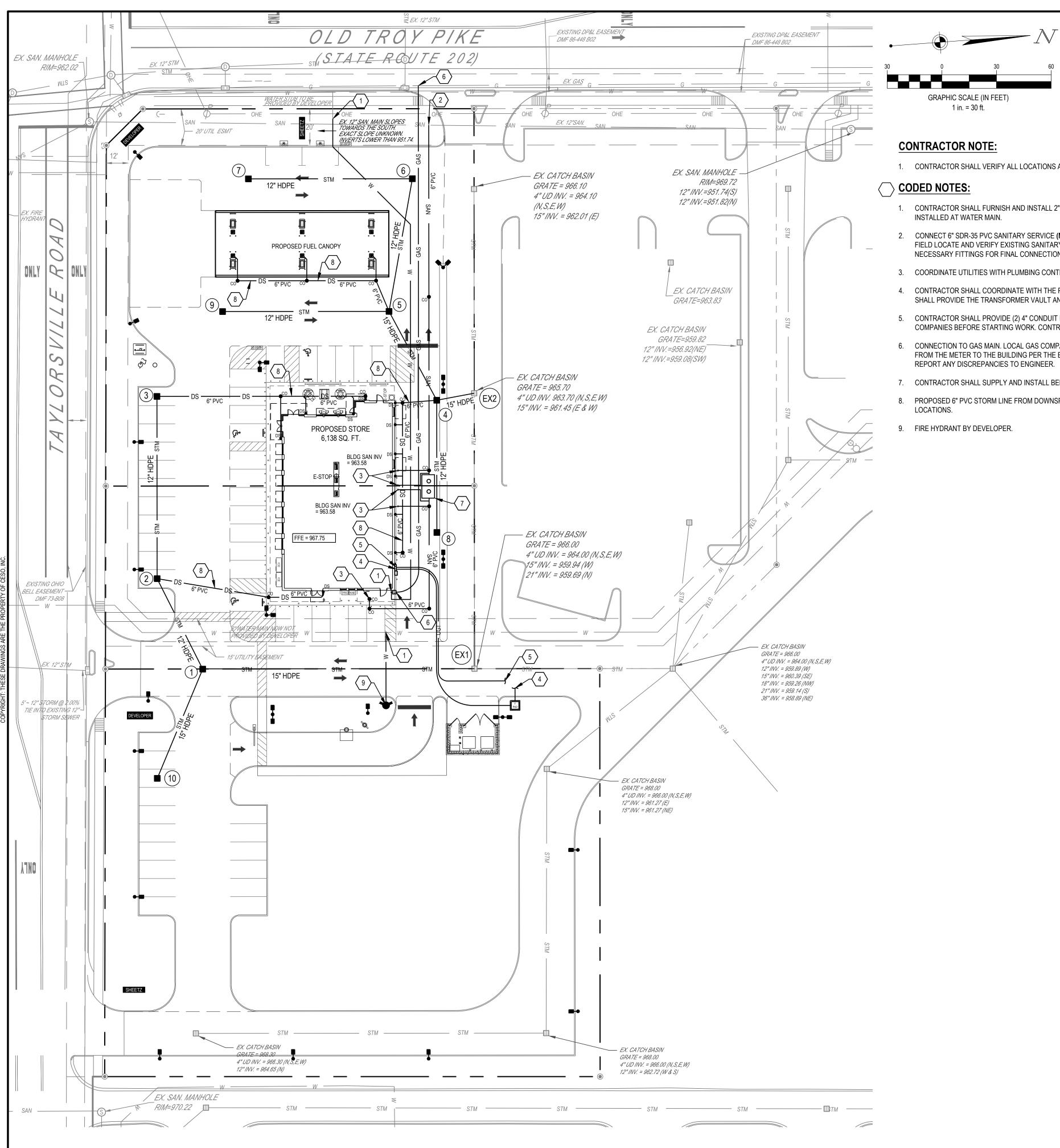

FINISHED GRADE ELEVATION

TOP OF CURB ELEVATION FINISHED GRADE ELEVATION

MATCH EXISTING ELEVATION

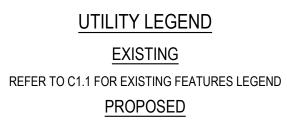
	BUILDING
960	MAJOR CONTOUR
962	MINOR CONTOUR
	GRADE BREAK
	CATCH BASIN
CO	CLEANOUT
DS	DOWNSPOUT
	STRUCTURE NUMBI
	FINISHED GRADE EI
	RIM ELEVATION
TC=XXX.XX FG=XXX.XX	TOP OF CURB ELEV FINISHED GRADE EI
M.E.	MATCH EXISTING EI
TI	TOP OF ISLAND
<u>X.XX%</u>	SLOPE ARROW
\blacktriangleright	FLOOD ROUTE

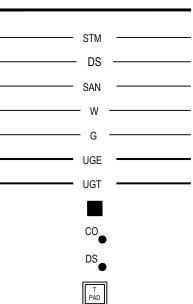
		V V			E		01	5	6.				
	REVISION DESCRIPTION	MAJOR SITE PLAN - 1ST SUBMITTAL	MAJOR SITE PLAN - 2ND SUBMITTAL	 DETAILED DEVELOPMENT PLAN - 1ST SUBMITTAL 	•	•	•	•	•	•	•	•	•
	DATE	• 04/29/2022	• 06/03/2022	08/19/2022	•	•							
	N	•	2	● 3	•	•	•	•	•	•	•	•	•
	- 1	01	h '	y	_			EN EN)22	2-8	-18	3	
	ð							-)22	2-8	-18	3	
	SKILKEN GOLD							20		2-8			OLD TROY PIKE & TAYLORSVILLE ROAD
	SKILKEN I GOLD					G							
IS TO						G L SSCO DA) I			


FORTY-EIGHT (48) HOURS BEFORE DIGGING I COMMENCE, THE CONTRACTORS SHALL NOT THE FOLLOWING AGENCIES: OHIO UTILITIES PROTECTION SERVICE AT 811 OR 1 (800) 362-2764 AND ALL OTHER AGENCIES WHICH MIGHT HAVE UNDERGROUND UTILITIES INVOLVING THIS PROJECT AND ARE NONMEMBERS OF OHIO UTILITIES PROTECTION SERVICE

CHECKED:

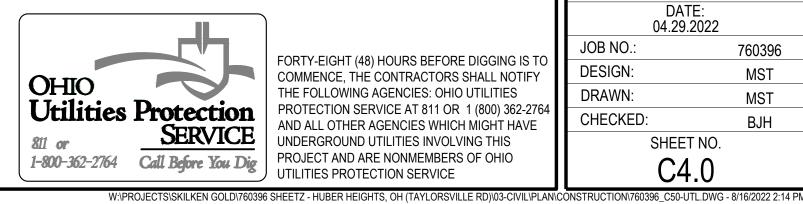
SHEET NO.


C3.1


BJH

1. CONTRACTOR SHALL VERIFY ALL LOCATIONS AND DEPTHS OF EXISTING UTILITIES.

- 1. CONTRACTOR SHALL FURNISH AND INSTALL 2" COPPER TUBE SIZE POLYETHYLENE PIPING FROM METER IN BUILDING TO NEW 2" TAP. NEW WATER TAPS WILL NEED TO BE
- 2. CONNECT 6" SDR-35 PVC SANITARY SERVICE (MINIMUM 1.00% SLOPE) TO EXISTING SANITARY CLEANOUT PER CITY OF HUBER HEIGHTS STANDARDS. CONTRACTOR SHALL FIELD LOCATE AND VERIFY EXISTING SANITARY CLEANOUT PRIOR TO CONSTRUCTION AND REPORT ANY DISCREPANCIES TO ENGINEER. CONTRACTOR SHALL PROVIDE ALL NECESSARY FITTINGS FOR FINAL CONNECTION.
- 3. COORDINATE UTILITIES WITH PLUMBING CONTRACTOR, CAP AND MARK FOR FUTURE CONNECTION. FINAL CONNECTION BY PLUMBING CONTRACTOR.
- 4. CONTRACTOR SHALL COORDINATE WITH THE POWER COMPANY TO VERIFY THE LOCATION, ORIGIN OF PRIMARY SERVICE, AND ALL STANDARDS FOR WORK. CONTRACTOR SHALL PROVIDE THE TRANSFORMER VAULT AND PAD, CT, METER SOCKET, CONDUIT AND CABLE, AND SECONDARY FINAL CONNECTION.
- 5. CONTRACTOR SHALL PROVIDE (2) 4" CONDUIT FOR TELEPHONE. CONTRACTOR SHALL VERIFY EXACT ROUTING AND TERMINATION REQUIREMENTS WITH UTILITY COMPANIES BEFORE STARTING WORK. CONTRACTOR SHALL COORDINATE WITH OTHER UTILITIES AND UTILIZE SHARED TRENCHING IF PERMITTED.
- 6. CONNECTION TO GAS MAIN. LOCAL GAS COMPANY SHALL FURNISH AND INSTALL GAS LINE FROM METER TO NEW TAP. THE CONTRACTOR SHALL INSTALL THE GAS LINE FROM THE METER TO THE BUILDING PER THE BUILDING DRAWINGS. CONTRACTOR SHALL FIELD LOCATE AND VERIFY EXISTING GAS MAIN PRIOR TO CONSTRUCTION AND
- 7. CONTRACTOR SHALL SUPPLY AND INSTALL BELOW GRADE 2000 GALLON GREASE INTERCEPTOR. REFER TO UTILITY DETAILS, SHEET C6.3.
- PROPOSED 6" PVC STORM LINE FROM DOWNSPOUTS TO STORM CATCH BASINS (MIN. SLOPE 1.00%). REFER TO ARCHITECTURAL PLANS FOR EXACT BUILDING DOWNSPOUT



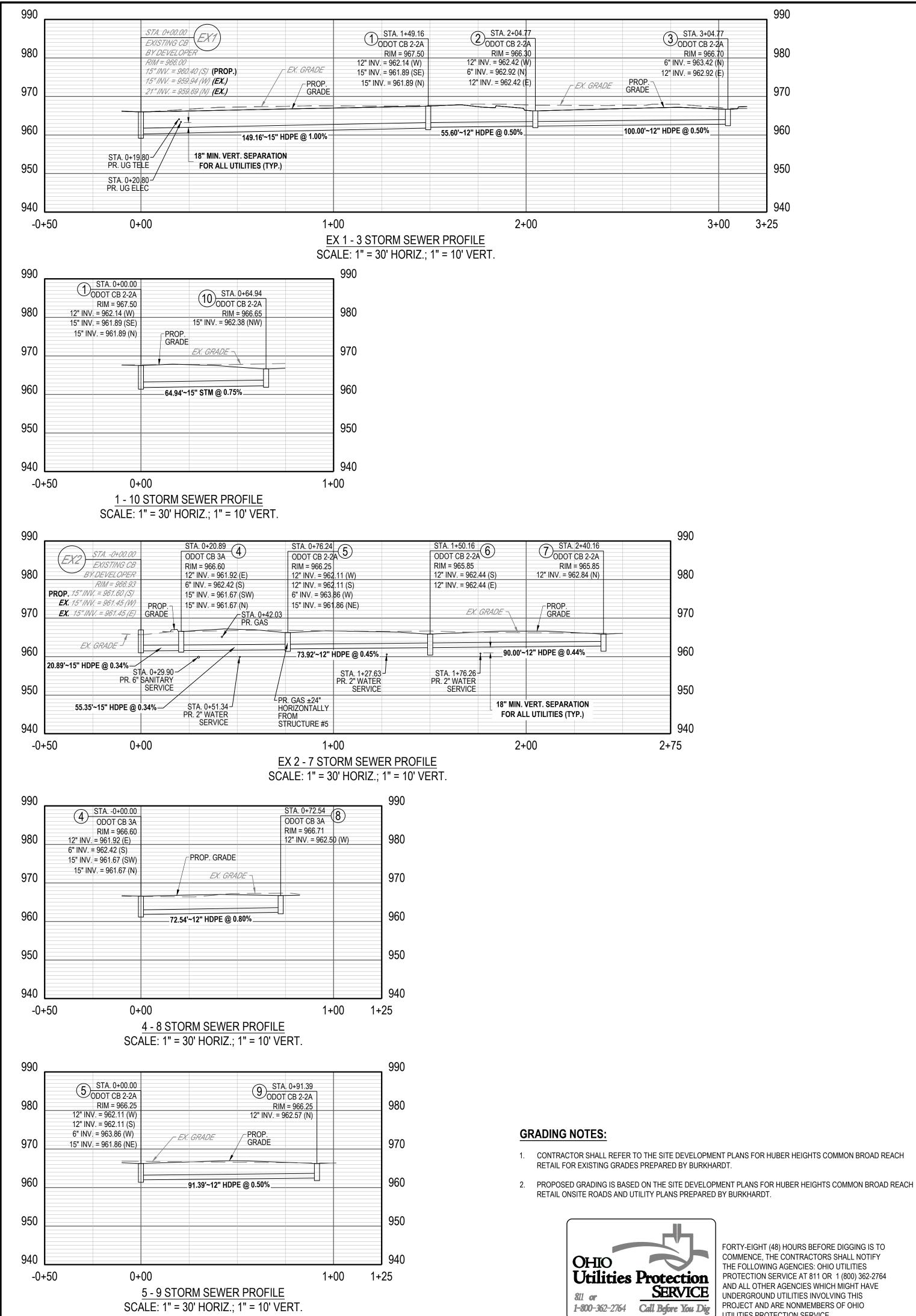
G

BUILDING STORM SEWER LINE STORM DOWNSPOUT LINE SANITARY SEWER LINE DOMESTIC WATER LINE GAS SERVICE LINE UNDERGROUND ELECTRIC LINE UNDERGROUND TELEPHONE LINE CATCH BASIN CLEANOUT DOWNSPOUT ELECTRICAL TRANSFORMER PAD

GAS METER

FORTY-EIGHT (48) HOURS BEFORE DIGGING IS T COMMENCE, THE CONTRACTORS SHALL NOTIFY THE FOLLOWING AGENCIES: OHIO UTILITIES PROTECTION SERVICE AT 811 OR 1 (800) 362-276 AND ALL OTHER AGENCIES WHICH MIGHT HAVE UNDERGROUND UTILITIES INVOLVING THIS PROJECT AND ARE NONMEMBERS OF OHIO UTILITIES PROTECTION SERVICE

DRAWN:


CHECKED:

SHEET NO.

C4.0

MST

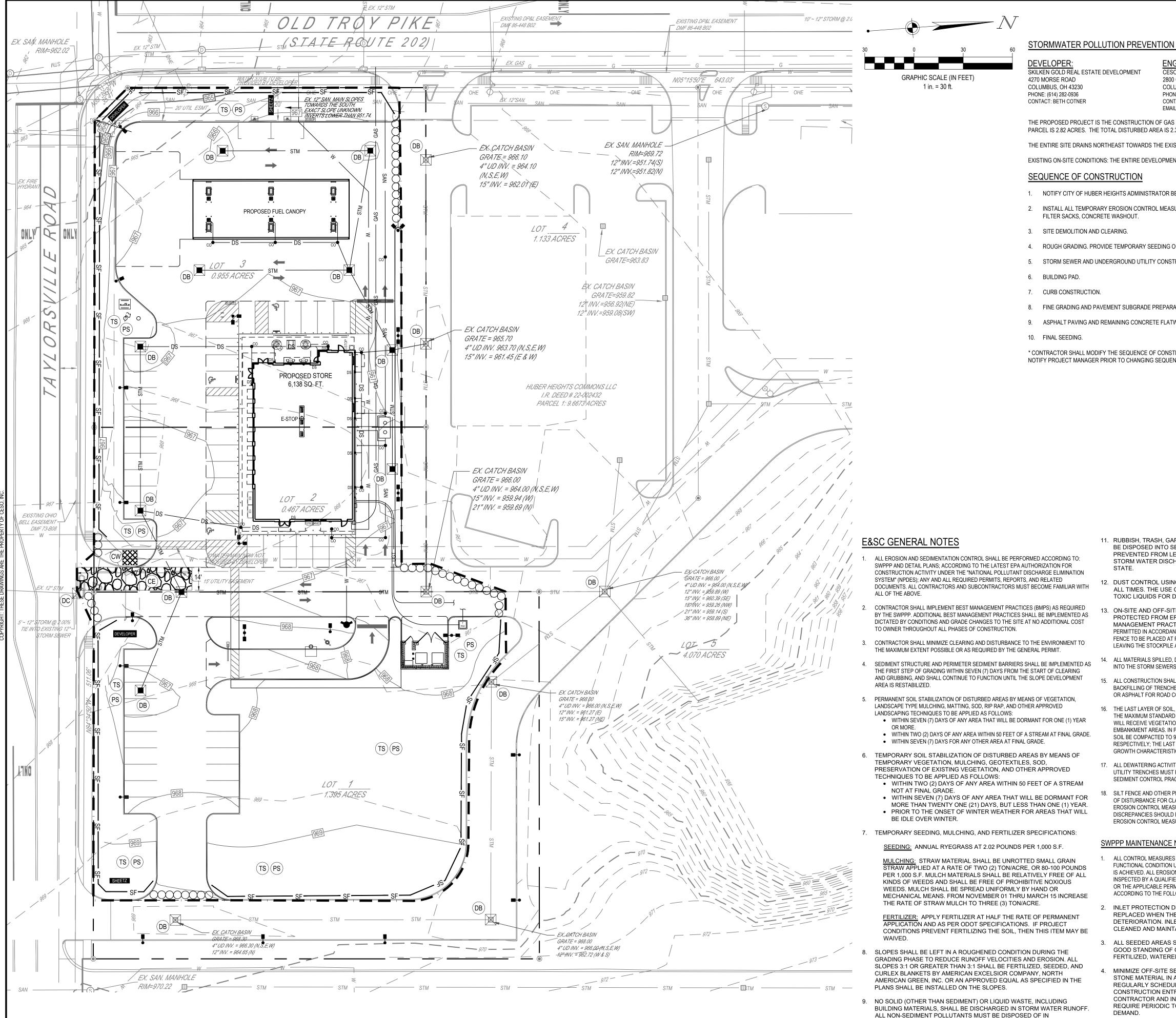

BJH

FORTY-EIGHT (48) HOURS BEFORE DIGGING IS TO COMMENCE, THE CONTRACTORS SHALL NOTIFY THE FOLLOWING AGENCIES: OHIO UTILITIES PROTECTION SERVICE AT 811 OR 1 (800) 362-2764 AND ALL OTHER AGENCIES WHICH MIGHT HAVE UNDERGROUND UTILITIES INVOLVING THIS PROJECT AND ARE NONMEMBERS OF OHIO UTILITIES PROTECTION SERVICE

to	n	Len	Drng A	rea	Rnoff	Area x	С	Тс		Rain	Total	Сар	Vel	Pipe		Invert El	ev	HGL Ele	v	Grnd / R	tim Elev	Line ID
ne	To Line		Incr	Total	coeff	Incr	Total	Inlet	Syst	-(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	_
		(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
D	7	64.941	0.75	0.75	0.60	0.45	0.45	10.0	10.0	5.3	2.38	5.61	3.47	15	0.75	961.89	962.38	962.66	963.00	967.50	966.65	1-10
	8	100.000	0.12	0.12	0.87	0.10	0.10	10.0	10.0	5.3	0.55	2.52	1.69	12	0.50	962.42	962.92	963.10	963.25	966.30	966.70	2-3
	7	55.604	0.23	0.35	0.88	0.20	0.31	10.0	12.4	4.8	1.48	2.53	3.34	12	0.50	962.14	962.42	962.69	962.97	967.50	966.30	1-2
	End	149.000	0.02	1.12	0.90	0.02	0.77	10.0	12.8	4.7	3.67	6.46	4.02	15	1.00	960.40	961.89	961.42	962.66	966.00	967.50	EX1-1
	5	90.000		0.13	0.90	0.12	0.12	10.0	10.0	5.3	0.62	2.38	1.59	12	0.44	962.44	962.84	963.15	963.24	965.85	965.85	6-7
	3	73.920		0.26	0.90	0.12	0.23	10.0	11.9	4.9	1.15	2.38	2.15	12	0.45	962.11	962.44	962.90	962.99	966.25	965.85	5-6
	3	91.385 55.351		0.14	0.87	0.12	0.12 0.45	10.0	10.0	5.3 4.8	0.65 2.17	2.53 3.78	1.55 2.09	12 15	0.50	962.11 961.67	962.57 961.86	962.90 962.73	962.98 962.78	966.25 966.60	966.25 966.25	5-9 4-5
	'	72.542		0.03	0.90	0.03	0.45	10.0	10.0	5.3	0.14	3.18	1.03	12	0.80	961.92	962.50	962.73	962.65	966.60	966.71	4-8
	End	20.889		0.63	0.90	0.08	0.56	10.0	16.6	4.2	2.34	3.74	2.96	15	0.34	961.60	961.67	962.38	962.43	965.70	966.60	EX2-4
																Numbo	r of lines: '	10		Run Da		
TO	ES:Inte		5.04 / (I	nlet time	e + 8.90)	^ 0.80;	Return p					Ana		is		Numbe					ate: 8/4/20	Storm Sewers v2022.00
	ES:Inte	ensity = 5	55.04 / (I Wei	nlet time	+ 8.90) bul a	^ 0.80;	Return p	Ful	I Ca	ipac	ity	Ana	alys			 						Storm Sewers v2022.00
	ES:Inte	ensity = 5	5.04 / (I WEI	nlet time	e + 8.90)	^ 0.80; atio Area x	Return p	Ful Tc	I Ca	Pac Rain		Ana		Pipe	Slope	Invert El		HGL Ele	ev Up	Grnd / R		Storm Sewers v2022.00
to tic	Drm Dr To Line	ensity = 5	5.04 / (I WEI	nlet time Ta rea Total	+ 8.90) bul a Rnoff	^ 0.80; atio Area x	Return p	Ful Tc	l Ca	Pac Rain	Total flow	Ana _{Cap}	alys vei	Pipe	Slope (%)	Invert El	ev	HGL Ele	1	Grnd / R	im Elev	Storm Sewers v2022.00
to atic	ES:Inte	Len (ft)	55.04 / (I Drng A Incr (ac)	nlet time Ta rea Total (ac)	Bula Rnoff coeff (C)	^ 0.80; Area x Incr	Return p C Total	Ful Tc Inlet (min)	I Ca Syst (min)	Rain (I) (in/hr)	Total flow (cfs)	Ana Cap full (cfs)	Vel (ft/s)	Pipe Size (in)	(%)	Invert El Dn (ft)	ev Up (ft)	HGL Ele Dn (ft)	Up (ft)	Grnd / R Dn (ft)	tim Elev Up (ft)	Storm Sewers v2022.00 Page
to atio	Drm To Line	ensity = 5 Se Len (ft) 64.941	55.04 / (I Drng A Incr (ac) 0.75	rea Total (ac)	+ 8.90) bula Rnoff coeff (C) 0.60	^ 0.80; Area x Incr 0.45	Return p C Total	Ful Tc Inlet (min)	Syst (min) 10.0	Rain (I) (in/hr) 5.3	Total flow (cfs) 5.61	Ana Cap full (cfs) 5.61	vel (ft/s) 4.57	Pipe Size (in) 15	(%) 0.75	Invert El Dn (ft) 961.89	ev Up (ft) 962.38	HGL Ele Dn (ft) 963.70	Up (ft) 964.19	Grnd / R Dn (ft) 967.50	tim Elev Up (ft) 966.65	Storm Sewers v2022.00 Page Line ID 1-10
atic ne	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000	55.04 / (I Drng A Incr (ac) 0.75 0.12	rea Total (ac) 0.75 0.12	+ 8.90) bula Rnoff coeff (C) 0.60 0.87	^ 0.80; atio Area x Incr 0.45 0.10	Return p C Total 0.45 0.10	Ful Tc Inlet (min) 10.0 10.0	Syst (min) 10.0 10.0	Rain (I) (in/hr) 5.3 5.3	Total flow (cfs) 5.61 2.52	Ana Cap full (cfs) 5.61 2.52	alys Vel (ft/s) 4.57 3.20	Pipe Size (in) 15 12	(%) 0.75 0.50	Invert El Dn (ft) 961.89 962.42	ev Up (ft) 962.38 962.92	HGL Ele Dn (ft) 963.70 964.10	Up (ft) 964.19 964.60	Grnd / R Dn (ft) 967.50 966.30	Eim Elev Up (ft) 966.65 966.70	Storm Sewers v2022.00 Page Line ID 1-10 2-3
atic ne	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23	rea Total (ac) 0.75 0.12 0.35	+ 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88	^ 0.80; Area x Incr 0.45 0.10 0.20	Return p C C Total 0.45 0.10 0.31	Ful Tc Inlet (min) 10.0 10.0 10.0	Syst (min) 10.0 10.0 12.4	Rain (I) (in/hr) 5.3 5.3 4.8	Total flow (cfs) 5.61 2.52 2.53	Ana Cap full (cfs) 5.61 2.52 2.53	Vel (ft/s) 4.57 3.20 3.22	Pipe Size (in) 15 12 12	(%) 0.75 0.50 0.50	Invert El Dn (ft) 961.89 962.42 962.14	ev Up (ft) 962.38 962.92 962.42	HGL Ele Dn (ft) 963.70 964.10 963.70	Up (ft) 964.19 964.60 963.98	Grnd / R Dn (ft) 967.50 966.30 967.50	tim Elev Up (ft) 966.65 966.70 966.30	Storm Sewers v2022.00 Page Line ID 1-10
tione	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02	rea Total (ac) 0.75 0.12	+ 8.90) bula Rnoff coeff (C) 0.60 0.87	^ 0.80; Area x Incr 0.45 0.10	Return p C Total 0.45 0.10	Ful Tc Inlet (min) 10.0 10.0	Syst (min) 10.0 10.0	Rain (I) (in/hr) 5.3 5.3	Total flow (cfs) 5.61 2.52	Ana Cap full (cfs) 5.61 2.52	alys Vel (ft/s) 4.57 3.20	Pipe Size (in) 15 12	(%) 0.75 0.50	Invert El Dn (ft) 961.89 962.42	ev Up (ft) 962.38 962.92	HGL Ele Dn (ft) 963.70 964.10	Up (ft) 964.19 964.60	Grnd / R Dn (ft) 967.50 966.30	Eim Elev Up (ft) 966.65 966.70	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2
atione	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000	55.04 / (I WCI Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13	nlet time rea Total (ac) 0.75 0.12 0.35 1.12	+ 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.02	Return p C Total 0.45 0.10 0.31 0.77	Ful Tc Inlet (min) 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7	Total flow (cfs) 5.61 2.52 2.53 6.46	Ana Cap full (cfs) 5.61 2.52 2.53 6.46	Vel (ft/s) 4.57 3.20 3.22 6.00	Pipe Size (in) 15 12 12 12 15	(%) 0.75 0.50 0.50 1.00	Invert El Dn (ft) 961.89 962.42 962.14 960.40	ev Up (ft) 962.38 962.92 962.42 961.89	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42	Up (ft) 964.19 964.60 963.98 962.92	Grnd / R Dn (ft) 967.50 966.30 967.50 966.00	Eim Elev Up (ft) 966.65 966.70 966.30 967.50	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1
ne 0	To Line 7 8 7 End 5	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 90.000	55.04 / (I WEI Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13	nlet time Ta rea Total (ac) 0.75 0.12 0.35 1.12 0.13	+ 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.02 0.12	Return p C Total 0.45 0.10 0.31 0.77 0.12	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02	Pipe Size (in) 15 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44	Invert El Dn (ft) 961.89 962.42 962.14 960.40 962.44	ev Up (ft) 962.38 962.92 962.42 961.89 962.84	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05	Up (ft) 964.19 964.60 963.98 962.92 964.45	Grnd / R Dn (ft) 967.50 966.30 967.50 966.00 965.85	Eim Elev Up (ft) 966.65 966.70 966.30 967.50 965.85	Storm Sewers v2022.00 Page 7 Line ID 1-10 2-3 1-2 EX1-1 6-7
ne 0	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14	nlet time Ta rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26	+ 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.02 0.12 0.12	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03	Pipe Size (in) 15 12 12 15 12 12 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45	Invert El Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.44	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83	Grnd / R Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 965.85	Storm Sewers v2022.00 Page 7 Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6
ne 0	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 73.920 91.385	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11	rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14	+ 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.87	^ 0.80; Area x Incr 0.45 0.10 0.20 0.02 0.12 0.12 0.12 0.12	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22	Pipe Size (in) 15 12 12 15 12 12 12 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50	Invert El Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11 962.11	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.84 962.44 962.57	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96	Grnd / R Dn (ft) 967.50 966.30 965.85 966.25 966.25	tim Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 965.85 965.85	Storm Sewers v2022.00 Page 7 Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9
NOT	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51	+ 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.12	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.45	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03	Pipe Size (in) 15 12 12 12 12 12 12 12 12 12	 (%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 	Invert El Dn (ft) 961.89 962.42 962.14 962.14 962.11 962.11 962.11 962.11	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.44 962.57 961.86	HGL Ele Dn (ft) 963.70 964.10 963.70 964.05 963.50 963.50 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28	Grnd / R Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25 966.25 966.25	Up (ft) 966.65 966.70 966.30 965.85 965.85 966.25 966.25	Storm Sewers v2022.00 Page 7 Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5
NOT	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	+ 8.90) Bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.13	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.45 0.12 0.45 0.12 0.45 0.12	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	 (%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80 	Invert El Dn (ft) 961.89 962.42 962.14 962.14 962.11 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.67	Grnd / R Dn (ft) 967.50 966.30 965.85 966.25 966.25 966.25 966.60 966.60	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.71	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 5-9 4-5 4-8
NOT	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	+ 8.90) Bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.13	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.45 0.12 0.45 0.12 0.45 0.12	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	 (%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80 	Invert El Dn (ft) 961.89 962.42 962.14 962.14 962.11 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.67	Grnd / R Dn (ft) 967.50 966.30 965.85 966.25 966.25 966.25 966.60 966.60	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.71	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 5-9 4-5 4-8
	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	+ 8.90) Bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.13	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.45 0.12 0.45 0.12 0.45 0.12	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	 (%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80 	Invert El Dn (ft) 961.89 962.42 962.14 962.14 962.11 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.67	Grnd / R Dn (ft) 967.50 966.30 965.85 966.25 966.25 966.25 966.60 966.60	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.71	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 5-9 4-5 4-8
NOT tatic ine 10 3 3 5 4 3 2	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	+ 8.90) Bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.45 0.12 0.45 0.12 0.45 0.12	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	 (%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80 	Invert El Dn (ft) 961.89 962.42 962.14 962.14 962.11 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.67	Grnd / R Dn (ft) 967.50 966.30 965.85 966.25 966.25 966.25 966.60 966.60	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.71	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 5-9 4-5 4-8
NOT tatic ine 10 3 3 5 4 3 2	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	+ 8.90) Bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.45 0.12 0.45 0.12 0.45 0.12	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	 (%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80 	Invert El Dn (ft) 961.89 962.42 962.14 962.14 962.11 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.67	Grnd / R Dn (ft) 967.50 966.30 965.85 966.25 966.25 966.25 966.60 966.60	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.71	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 5-9 4-5 4-8
NOT	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	+ 8.90) Bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.45 0.12 0.45 0.12 0.45 0.12	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	 (%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80 	Invert El Dn (ft) 961.89 962.42 962.14 962.14 962.11 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.67	Grnd / R Dn (ft) 967.50 966.30 965.85 966.25 966.25 966.25 966.60 966.60	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.71	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 5-9 4-5 4-8
NOT	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	+ 8.90) Bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.45 0.12 0.45 0.12 0.45 0.12	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	 (%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80 	Invert El Dn (ft) 961.89 962.42 962.14 962.14 962.11 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.67	Grnd / R Dn (ft) 967.50 966.30 965.85 966.25 966.25 966.25 966.60 966.60	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.71	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 5-9 4-5 4-8
NOT	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	+ 8.90) Bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.45 0.12 0.45 0.12 0.45 0.12	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	 (%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80 	Invert El Dn (ft) 961.89 962.42 962.14 962.14 962.11 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.67	Grnd / R Dn (ft) 967.50 966.30 965.85 966.25 966.25 966.25 966.60 966.60	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.71	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 5-9 4-5 4-8
NOT	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	+ 8.90) Bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.45 0.12 0.45 0.12 0.45 0.12	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	 (%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80 	Invert El Dn (ft) 961.89 962.42 962.14 962.14 962.11 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.67	Grnd / R Dn (ft) 967.50 966.30 965.85 966.25 966.25 966.25 966.60 966.60	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.71	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 5-9 4-5 4-8
NOT	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	+ 8.90) Bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.45 0.12 0.45 0.12 0.45 0.12	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	 (%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80 	Invert El Dn (ft) 961.89 962.42 962.14 962.14 962.11 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.67	Grnd / R Dn (ft) 967.50 966.30 965.85 966.25 966.25 966.25 966.60 966.60	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.71	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 5-9 4-5 4-8
NOT	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	+ 8.90) Bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.45 0.12 0.45 0.12 0.45 0.12	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	 (%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80 	Invert El Dn (ft) 961.89 962.42 962.14 962.14 962.11 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.67	Grnd / R Dn (ft) 967.50 966.30 965.85 966.25 966.25 966.25 966.60 966.60	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.71	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 5-9 4-5 4-8
NOT	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	+ 8.90) Bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.45 0.12 0.45 0.12 0.45 0.12	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	 (%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80 	Invert El Dn (ft) 961.89 962.42 962.14 962.14 962.11 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.67	Grnd / R Dn (ft) 967.50 966.30 965.85 966.25 966.25 966.25 966.60 966.60	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.71	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 5-9 4-5 4-8
o o	To Line 7 8 7 End 5 3 1 1 1 End	ensity = 5	5.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.14 0.11 0.03 0.09	rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	+ 8.90) Bul Rnoff coeff (C) 0.60 0.87 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	^ 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.03 0.08	Return p	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	 (%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80 	Invert El Dn (ft) 961.89 962.42 962.14 962.11 962.11 962.11 961.67 961.92 961.60	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 963.70 963.50 963.09 963.09 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.67	Grnd / R Dn (ft) 967.50 966.30 965.85 966.25 966.25 966.60 965.70	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.71	Storm Sewers v2022.00 Page Line ID I-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-8 EX2-4
o atione 0	ES:Inte	ensity = 5 Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542 20.889	5.04 / (I VEI Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.14 0.11 0.03 0.09	Ta Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03 0.63	+ 8.90) Bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	 ^ 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.13 0.03 0.08 	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.45 0.03 0.56	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0 16.6	Rain (1) 5.3 5.3 4.8 4.7 5.3 4.8 5.3 4.8 5.3 4.8 5.3 4.8 5.3 4.9 5.3 4.8 5.3 4.2	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.78 3.78 3.74	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18 3.74	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.08 4.05 4.23	Pipe Size (in) 15 12 12 12 12 12 12 15 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80 0.34	Invert El Dn (ft) 961.89 962.42 962.14 962.11 962.11 962.11 961.67 961.92 961.60	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50 961.67 961.67	HGL Ele Dn (ft) 963.70 964.10 963.70 963.70 963.50 963.09 963.09 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.67	Grnd / R Dn (ft) 967.50 966.30 965.85 966.25 966.25 966.60 965.70	Lim Elev Up (ft) 966.65 966.70 966.30 965.85 965.85 966.25 966.25 966.60	Storm Sewers v2022.00 Page Line ID I-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-8 EX2-4

N N	io		Len	Drng A		Rnoff	Area x		Тс		Eve Rain	Total		Vel	Pipe		Invert El	ev	HGL Ele	€V	Grnd / R	im Elev	Line ID
A	ne	То						1	-	Syst		1				Slope		1		1		1	-
The second of the seco		Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
The second seco)	7	64.941	0.75	0.75	0.60	0.45	0.45	10.0	10.0	5.3	2.38	5.61	3.47	15	0.75	961.89	962.38	962.66	963.00	967.50	966.65	1-10
no. n																							
The second seco		7	55.604	0.23	0.35	0.88	0.20	0.31	10.0	12.4	4.8	1.48	2.53	3.34	12	0.50	962.14	962.42	962.69	962.97	967.50	966.30	1-2
A P P P P P P P P P P P P P P P P P		End	149.000	0.02	1.12	0.90	0.02	0.77	10.0	12.8	4.7	3.67	6.46	4.02	15	1.00	960.40	961.89	961.42	962.66	966.00	967.50	EX1-1
D		5	90.000	0.13	0.13	0.90	0.12	0.12	10.0	10.0	5.3	0.62	2.38	1.59	12	0.44	962.44	962.84	963.15	963.24	965.85	965.85	6-7
 		3	73.920	0.13	0.26	0.90	0.12	0.23	10.0	11.9	4.9	1.15	2.38	2.15	12	0.45	962.11	962.44	962.90	962.99	966.25	965.85	5-6
Transformed a state of the state of		3													12								
Prior Dial																							
• max in x with the set of		•																					
VOTES theready = 5 5.0 4 / finded time + 8.50 i ^ 0.20; Return period = Yrs. 10; ; e or e = elip b = tox: The method of the final set of th		Ena	20.009	0.09	0.65	0.90	0.08	0.56	10.0	10.0	4.2	2.34	3.74	2.90	15	0.34	901.00	901.07	902.30	902.43	965.70	900.00	EA2-4
The field of the																							
UPTE3 timenety = 95 0.04 / linkt time + 8 30) + 0.82, Return period = Ya. 10. ; e = or e = elig b = tox torm Sever Tabulation - Full Capacity Analysis time no non organization - Full Capacity - Full - Fu																							
Port Situate by = 50.04 / full that time + 6.00 * 0.02. Return period = Yrs. 10 ; c = or e = elip b = toxt the method of 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																							
VOTES theready = 5 5.0 4 / finded time + 8.50 i ^ 0.20; Return period = Yrs. 10; ; e or e = elip b = tox: The method of the final set of th																							
VOTES theready = 5 5.0 4 / finded time + 8.50 i ^ 0.20; Return period = Yrs. 10; ; e or e = elip b = tox: The method of the final set of th																							
VOTES theready = 5 5.0 4 / finded time + 8.50 i ^ 0.20; Return period = Yrs. 10; ; e or e = elip b = tox: The method of the final set of th																							
VOTES theready = 5 5.0 4 / finded time + 8.50 i ^ 0.20; Return period = Yrs. 10; ; e or e = elip b = tox: The method of the final set of th																							
VOTES theready = 5 5.0 4 / finded time + 8.50 i ^ 0.20; Return period = Yrs. 10; ; e or e = elip b = tox: The method of the final set of th																							
OTES Shinkersky = 50.04 / filmtisting + 8.50) * 0.80; Resum pend = Yrs. 10; ; = er e = elip b = tox: Procession Processical Processin																							
Proper File 7: 00394_5Meete-Hubertuck14_samese3 set 10 ; c = cr = e alls b = bex																							
VOTES linkestiy = 5.0 4 / fulk time + 8.50 / 0.62. Return period +Ys.10 ; c = or e = elip b = box The method of the second sec																							
20173 Shithead y = 50.04 / filled time + 8.00 / 0.02. Return pend = Yrs. 0; ; e = or y = ello b = tox the method of the second																							
<page-header> Norm Construction Construction</page-header>		curile.																					122
mi m		ES:Inte		55.04 / (I	nlet time	e + 8.90)	^ 0.80;	Return p							is								Storm Sewers v2022.00
No 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	tc	ES:Inte	Se	55.04 / (I W EI	r Ta	+ 8.90) bul a Rnoff	^ 0.80;	Return p	Ful		Pac Rain	total	Ana _{Cap}	alys			Invert El			€V	Grnd / R		Storm Sewers v2022.00
Normal series in the series	tc	S:Inte	Len	55.04 / (I W EI Drng A	r Ta	+ 8.90) bula Rnoff coeff	^ 0.80; atio	Return p n -	Ful Tc	I Ca _{Syst}	Rain	Total flow	Ana ^{Cap} full	alys vei	Pipe Size		Dn	ev Up	HGL Ele Dn	Up		im Elev Up	Storm Sewers v2022.00
N 66.00 0.20 0.30 0.80 0.20 0.31 0.00 0.20 0.71 0.0 0.20 0.71 0.0 0.20 0.71 0.0 0.20 0.70 0.0 0.30 0.20 0.71 0.0 0.20 0.20 0.20 0.20 0.20 0.20 0.20	tc	S:Inte	Len	S5.04 / (I WEI Drng A Incr	r Ta Area	+ 8.90) bul Rnoff coeff	^ 0.80; atio	Return p n -	Ful Tc	I Ca _{Syst}	Rain	Total flow	Ana ^{Cap} full	alys vei	Pipe Size		Dn	ev Up	HGL Ele Dn	Up	Dn	im Elev Up	Storm Sewers v2022.00
An in the series of th	S tc atio	Drm To Line	Len (ft)	55.04 / (I Drng A Incr (ac)	r Ta Area Total (ac)	+ 8.90) bula Rnoff coeff (C)	^ 0.80; Area x Incr	Return p C Total	Ful Tc Inlet (min)	Syst (min)	Rain (I) (in/hr)	Total flow (cfs)	Ana ^{Cap} full (cfs)	vel (ft/s)	Pipe Size (in)	(%)	Dn (ft)	ev Up (ft)	HGL Ele Dn (ft)	Up (ft)	Dn (ft)	im Elev Up (ft)	Storm Sewers v2022.00 Page
 s s	stc atio ne	To Line	Len (ft) 64.941	55.04 / (I Drng A Incr (ac) 0.75	r Ta Area Total (ac) 0.75	+ 8.90)	^ 0.80; Atio Area x Incr 0.45	Return p a C Total	Ful Tc Inlet (min) 10.0	Syst (min) 10.0	Rain (I) (in/hr) 5.3	Total flow (cfs) 5.61	Ana Cap full (cfs) 5.61	Vel (ft/s) 4.57	Pipe Size (in) 15	(%) 0.75	Dn (ft) 961.89	ev Up (ft) 962.38	HGL Ele Dn (ft) 963.70	Up (ft) 964.19	Dn (ft) 967.50	im Elev Up (ft) 966.65	Storm Sewers v2022.00 Page Line ID 1-10
 	o ne	To Line 7 8	Len (ft) 64.941 100.000	55.04 / (I Drng A Incr (ac) 0.75 0.12	r Ta Total (ac) 0.75 0.12	+ 8.90)	^ 0.80; Area x Incr 0.45 0.10	Return p n - 3 C Total 0.45 0.10	Ful Tc Inlet (min) 10.0 10.0	Syst (min) 10.0 10.0	Rain (I) (in/hr) 5.3 5.3	Total flow (cfs) 5.61 2.52	Ana Cap full (cfs) 5.61 2.52	alys Vel (ft/s) 4.57 3.20	Pipe Size (in) 15 12	(%) 0.75 0.50	Dn (ft) 961.89 962.42	ev Up (ft) 962.38 962.92	HGL Ele Dn (ft) 963.70 964.10	Up (ft) 964.19 964.60	Dn (ft) 967.50 966.30	im Elev Up (ft) 966.65 966.70	Storm Sewers v2022.00 Page Line ID 1-10 2-3
 3 91.36 0.14 0.14 0.47 0.12 0.12 0.12 10.0 10. 5.3 2.50 2.53 2.2 12 0.5 96.21 96.25 96.30 96.60 96.25	stc atio ne	To Line 7 8 7	Se Len (ft) 64.941 100.000 55.604	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23	r Ta Total (ac) 0.75 0.12 0.35	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88	^ 0.80; Area x Incr 0.45 0.10 0.20	Return p n - (C Total 0.45 0.10 0.31	Ful Tc Inlet (min) 10.0 10.0 10.0	Syst (min) 10.0 12.4	Rain (I) (in/hr) 5.3 5.3 4.8	Total flow (cfs) 5.61 2.52 2.53	Ana Cap full (cfs) 5.61 2.52 2.53	Alys Vel (ft/s) 4.57 3.20 3.22	Pipe Size (in) 15 12 12	(%) 0.75 0.50 0.50	Dn (ft) 961.89 962.42 962.14	ev Up (ft) 962.38 962.92 962.42	HGL Ele Dn (ft) 963.70 964.10 963.70	Up (ft) 964.19 964.60 963.98	Dn (ft) 967.50 966.30 967.50	im Elev Up (ft) 966.65 966.70 966.30	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2
 1. 1.	o ne	To Line 7 8 7 End	Se Len (ft) 64.941 100.000 55.604 149.000	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02	Ta Ta Total (ac) 0.75 0.12 0.35 1.12	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.02	Return p n - (C Total 0.45 0.10 0.31 0.77	Ful Tc Inlet (min) 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8	Rain (I) (in/hr) 5.3 5.3 4.8 4.7	Total flow (cfs) 5.61 2.52 2.53 6.46	Ana Cap full (cfs) 5.61 2.52 2.53 6.46	Vel (ft/s) 4.57 3.20 3.22 6.00	Pipe Size (in) 15 12 12 12	(%) 0.75 0.50 0.50 1.00	Dn (ft) 961.89 962.42 962.14 960.40	ev Up (ft) 962.38 962.92 962.42 961.89	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42	Up (ft) 964.19 964.60 963.98 962.92	Dn (ft) 967.50 966.30 967.50 966.00	im Elev Up (ft) 966.65 966.70 966.30 967.50	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1
1 1 0, 2, 2, 4 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	o ne	To Line 7 8 7 End 5	Se Len (ft) 64.941 100.000 55.604 149.000 90.000	55.04 / (I WEI Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13	r Ta Total (ac) 0.75 0.12 0.35 1.12 0.13	+ 8.90)	* 0.80; Area x Incr 0.45 0.10 0.20 0.02 0.12	Return p n – (C Total 0.45 0.10 0.31 0.77 0.12	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02	Pipe Size (in) 15 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44	Dn (ft) 961.89 962.42 962.14 960.40 962.44	ev Up (ft) 962.38 962.92 962.42 961.89 962.84	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05	Up (ft) 964.19 964.60 963.98 962.92 964.45	Dn (ft) 967.50 966.30 967.50 966.00 965.85	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7
End 20.88 0.09 0.63 0.90 0.8 0.90 0.8 0.90 0.8 0.90 0.8 0.90 0.90	o ne	To Line 7 8 7 End 5 3	Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920	55.04 / (I WEI Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13	r Ta rea Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26	+ 8.90)	* 0.80; Area x Incr 0.45 0.10 0.20 0.02 0.12 0.12	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03	Pipe Size (in) 15 12 12 15 12 12 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45	Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.44	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83	Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 965.85	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6
Project File: 760396_Sheetz-HuberHtsOH_sewers3.stm Number of lines: 10 Run Date: 8/4/2022	o o	To Line 7 8 7 End 5 3 3	Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11	r Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.23 0.12 0.45	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7	Pac Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03	Pipe Size (in) 15 12 12 12 12 12 12 12 12 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50	Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11 962.11 962.11	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.44 962.57 961.86	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28	Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25 966.25 966.60	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 965.25 966.25	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9
NOTES:Intensity = 55.04 / (Inlet time + 8.90) ^ 0.80; Return period =Yrs. 10 ; Total flows limited to full flow capacities ; c = cir e = ellip b = box	atio ne	To Line 7 8 7 End 5 3 1 1	Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.23 0.12 0.45 0.31	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80	Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.28	Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25 966.25 966.60 966.60	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.71	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-8
NOTES:Intensity = 55.04 / (Inlet time + 8.90) ^ 0.80; Return period =Yrs. 10 ; Total flows limited to full flow capacities ; c = cir e = ellip b = box	o o	To Line 7 8 7 End 5 3 1 1	Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.23 0.12 0.45 0.31	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80	Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.28	Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25 966.25 966.60 966.60	Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.71	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-8
NOTES:Intensity = 55.04 / (Inlet time + 8.90) ^ 0.80; Return period =Yrs. 10 ; Total flows limited to full flow capacities ; c = cir e = ellip b = box	o ne	To Line 7 8 7 End 5 3 1 1	Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.23 0.12 0.45 0.31	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80	Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.28	Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25 966.25 966.60 966.60	im Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 965.85 965.85 966.25 966.25 966.25	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-8
NOTES:Intensity = 55.04 / (Inlet time + 8.90) ^ 0.80; Return period =Yrs. 10 ; Total flows limited to full flow capacities ; c = cir e = ellip b = box	o o	To Line 7 8 7 End 5 3 1 1	Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.23 0.12 0.45 0.31	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80	Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.28	Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25 966.25 966.60 966.60	im Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 965.85 965.85 966.25 966.25 966.25	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-8
NOTES:Intensity = 55.04 / (Inlet time + 8.90) ^ 0.80; Return period =Yrs. 10 ; Total flows limited to full flow capacities ; c = cir e = ellip b = box	o o	To Line 7 8 7 End 5 3 1 1	Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.23 0.12 0.45 0.31	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80	Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.28	Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25 966.25 966.60 966.60	im Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 965.85 965.85 966.25 966.25 966.25	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-8
NOTES:Intensity = 55.04 / (Inlet time + 8.90) ^ 0.80; Return period =Yrs. 10 ; Total flows limited to full flow capacities ; c = cir e = ellip b = box	o ne	To Line 7 8 7 End 5 3 1 1	Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.23 0.12 0.45 0.31	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80	Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.28	Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25 966.25 966.60 966.60	im Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 965.85 965.85 966.25 966.25 966.25	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-8
NOTES:Intensity = 55.04 / (Inlet time + 8.90) ^ 0.80; Return period =Yrs. 10 ; Total flows limited to full flow capacities ; c = cir e = ellip b = box	atio ne	To Line 7 8 7 End 5 3 1 1	Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.23 0.12 0.45 0.31	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80	Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.28	Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25 966.25 966.60 966.60	im Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 965.85 965.85 966.25 966.25 966.25	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-8
NOTES:Intensity = 55.04 / (Inlet time + 8.90) ^ 0.80; Return period =Yrs. 10 ; Total flows limited to full flow capacities ; c = cir e = ellip b = box	atio ne	To Line 7 8 7 End 5 3 1 1	Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.23 0.12 0.45 0.31	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80	Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.28	Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25 966.25 966.60 966.60	im Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 965.85 965.85 966.25 966.25 966.25	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-8
NOTES:Intensity = 55.04 / (Inlet time + 8.90) ^ 0.80; Return period =Yrs. 10 ; Total flows limited to full flow capacities ; c = cir e = ellip b = box	atio ne	To Line 7 8 7 End 5 3 1 1	Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.23 0.12 0.45 0.31	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80	Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.28	Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25 966.25 966.60 966.60	im Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 965.85 965.85 966.25 966.25 966.25	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-8
IOTES:Intensity = 55.04 / (Inlet time + 8.90) ^ 0.80; Return period =Yrs. 10 ; Total flows limited to full flow capacities ; c = cir e = ellip b = box	tc atio ne	To Line 7 8 7 End 5 3 1 1	Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.23 0.12 0.45 0.31	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80	Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.28	Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25 966.25 966.60 966.60	im Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 965.85 965.85 966.25 966.25 966.25	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-8
IOTES:Intensity = 55.04 / (Inlet time + 8.90) ^ 0.80; Return period =Yrs. 10 ; Total flows limited to full flow capacities ; c = cir e = ellip b = box	tc atio ne	To Line 7 8 7 End 5 3 1 1	Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.23 0.12 0.45 0.31	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80	Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.28	Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25 966.25 966.60 966.60	im Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 965.85 965.85 966.25 966.25 966.25	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-8
IOTES:Intensity = 55.04 / (Inlet time + 8.90) ^ 0.80; Return period =Yrs. 10 ; Total flows limited to full flow capacities ; c = cir e = ellip b = box	tc atio ne	To Line 7 8 7 End 5 3 1 1	Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.23 0.12 0.45 0.31	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80	Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.28	Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25 966.25 966.60 966.60	im Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 965.85 965.85 966.25 966.25 966.25	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-8
NOTES:Intensity = 55.04 / (Inlet time + 8.90) ^ 0.80; Return period =Yrs. 10 ; Total flows limited to full flow capacities ; c = cir e = ellip b = box	o ne	To Line 7 8 7 End 5 3 1 1	Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.23 0.12 0.45 0.31	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80	Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.28	Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25 966.25 966.60 966.60	im Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 965.85 965.85 966.25 966.25 966.25	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-8
	o o	To Line 7 8 7 End 5 3 1 1	Se Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542	55.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.13 0.14 0.11 0.03	Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03	e + 8.90) bul Rnoff coeff (C) 0.60 0.87 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.23 0.12 0.45 0.31	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80	Dn (ft) 961.89 962.42 962.14 960.40 962.44 962.11 962.11 961.67 961.92	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50	HGL Ele Dn (ft) 963.70 964.10 963.70 961.42 964.05 963.50 963.50 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.28	Dn (ft) 967.50 966.30 967.50 966.00 965.85 966.25 966.25 966.60 966.60	im Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 965.85 965.85 966.25 966.25 966.25	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-8
	Stc tatio	ES:Inte	Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542 20.889	5.04 / (I Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.14 0.11 0.03 0.09	Taa (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03 0.63	bul bul coeff coeff coeff coeff coeff coeff 0.60 0.87 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	* 0.80; Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.13 0.03 0.08	Return p C C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.45 0.03 0.56	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0	Rain (I) (in/hr) 5.3 5.3 4.8 4.7 5.3 4.9 5.3 4.9 5.3 4.8 5.3	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.18	Ana Cap full (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.38 2.53 3.78 3.18	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.03 4.05	Pipe Size (in) 15 12 12 12 12 12 12 12 12 15 12	(%) 0.75 0.50 0.50 1.00 0.44 0.45 0.50 0.34 0.80	Dn (ft) 961.89 962.42 962.14 962.11 962.11 961.67 961.92 961.60	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50 961.67	HGL Ele Dn (ft) 963.70 964.10 963.70 963.70 963.50 963.09 963.09 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.28	Dn (ft) 967.50 966.30 967.50 966.25 966.25 966.60 965.70	Image: Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.60	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-5 4-8 EX2-4
	Stc tatio ine	To Line 7 8 7 End 5 3 1 1 End	Len (ft) 64.941 100.000 55.604 149.000 90.000 73.920 91.385 55.351 72.542 20.889	5.04 / (I VEI Drng A Incr (ac) 0.75 0.12 0.23 0.02 0.13 0.14 0.11 0.03 0.09	r Ta Total (ac) 0.75 0.12 0.35 1.12 0.13 0.26 0.14 0.51 0.03 0.63	+ 8.90)	* 0.80; Area x Area x Incr 0.45 0.10 0.20 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.03 0.08	Return p C Total 0.45 0.10 0.31 0.77 0.12 0.23 0.12 0.45 0.03 0.56	Ful Tc Inlet (min) 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Syst (min) 10.0 12.4 12.8 10.0 11.9 10.0 12.7 10.0 16.6	Rain (i) (in/hr) 5.3 4.8 4.7 5.3 4.8 4.7 5.3 4.8 4.7 5.3 4.8 5.3 4.9 5.3 4.8 5.3 4.2	Total flow (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 2.53 3.78 3.78 3.78 3.74	Ana (cfs) 5.61 2.52 2.53 6.46 2.38 2.38 3.78 3.18 3.74	Vel (ft/s) 4.57 3.20 3.22 6.00 3.02 3.03 3.22 3.08 4.05 4.23	Pipe Size (in) 15 12 12 12 12 12 12 15 12 15 12	(%) 0.75 0.50 0.50 0.44 0.45 0.50 0.34 0.80 0.34	Dn (ft) 961.89 962.42 962.14 962.11 962.11 961.67 961.92 961.60	ev Up (ft) 962.38 962.92 962.42 961.89 962.84 962.57 961.86 962.50 961.67 961.67	HGL Ele Dn (ft) 963.70 964.10 963.70 963.70 963.50 963.09 963.09 963.09 963.09	Up (ft) 964.19 964.60 963.98 962.92 964.45 963.83 963.96 963.28 963.28	Dn (ft) 967.50 966.30 967.50 966.25 966.25 966.60 965.70	Image: Elev Up (ft) 966.65 966.70 966.30 967.50 965.85 966.25 966.25 966.60	Storm Sewers v2022.00 Page Line ID 1-10 2-3 1-2 EX1-1 6-7 5-6 5-9 4-5 4-5 4-8 EX2-4

MST


BJH

CHECKED:

W:\PROJECTS\SKILKEN GOLD\760396 SHEETZ - HUBER HEIGHTS, OH (TAYLORSVILLE RD)\03-CIVIL\PLAN\CONSTRUCTION\760396_C51-PROFILES.DWG - 8/16/2022 2:15 PI

SHEET NO.

C4.1

GREASE ABSORBING MATERIALS AND FLOTATION BOOMS TO CLEAN AND CONTAIN FUEL AND CHEMICAL SPILLS MUST BE KEPT ON SITE. 10. IF THE ACTION OF VEHICLES TRAVELING OVER THE STABILIZED CONSTRUCTION EXIT DOES NOT SUFFICIENTLY REMOVE MOST OF THE DIRT AND MUD, THEN THE TIRES MUST BE WASHED BEFORE VEHICLES ENTER A PUBLIC ROAD. PROVISIONS MUST BE MADE TO INTERCEPT THE

WATER AND TRAP THE SEDIMENT BEFORE IT IS CARRIED OFF THE SITE.

OFF-SITE WHEN THEY HARDEN. STORAGE TANKS SHOULD ALSO BE

LOCATED IN PIT OR DIKED AREAS. IN ADDITION, SUFFICIENT OIL AND

ACCORDANCE WITH LOCAL, STATE, AND FEDERAL GUIDELINES. WASH

OUT OF CEMENT TRUCKS SHOULD OCCUR IN DESIGNATED PIT OR DIKED

AREAS, WHERE WASHINGS CAN BE REMOVED AND PROPERLY DISPOSED

- 11. RUBBISH, TRASH, GARBAGE, LITTER, OR OTHER SUCH MATERIALS SHALL 8. ALL CATCH BASIN GRATES ARE TO BE PROTECTED WITH INLET BAGS BE DISPOSED INTO SEALED CONTAINERS. MATERIALS SHALL BE AFTER THEY ARE INSTALLED. THEY SHOULD BE ROUTINELY CLEANED AND PREVENTED FROM LEAVING THE SITE THROUGH THE ACTION OF WIND OR MAINTAINED STORM WATER DISCHARGE INTO DRAINAGE DITCHES OR WATERS OF THE CONTAINERS SHALL BE AVAILABLE FOR DISPOSAL OF DEBRIS, TRASH, STATE.
- 12. DUST CONTROL USING APPROVED MATERIALS MUST BE PERFORMED AT ALL TIMES. THE USE OF MOTOR OILS AND OTHER PETROLEUM BASED OR TOXIC LIQUIDS FOR DUST SUPPRESSION IS PROHIBITED.

- 13. ON-SITE AND OFF-SITE STOCKPILE AND BORROW AREAS SHALL BE PROTECTED FROM EROSION AND SEDIMENTATION BY THE USE OF BEST MANAGEMENT PRACTICES. THESE AREAS MUST BE SHOWN IN THE SITE MAP AND PERMITTED IN ACCORDANCE WITH GENERAL PERMIT REQUIREMENTS. AT A MINIMUM SILT FENCE TO BE PLACED AT PERIMETER OF STOCKPILE AREA TO PREVENT SOIL FROM LEAVING THE STOCKPILE AREA.
- 14. ALL MATERIALS SPILLED, DROPPED, WASHED, OR TRACKED ONTO THE ROADWAYS OR INTO THE STORM SEWERS MUST BE REMOVED IMMEDIATELY.
- 15. ALL CONSTRUCTION SHALL BE STABILIZED AT THE END OF EACH DAY; THIS INCLUDES BACKFILLING OF TRENCHES FOR UTILITY CONSTRUCTION AND PLACEMENT OF GRAVEL OR ASPHALT FOR ROAD CONSTRUCTION.
- 16. THE LAST LAYER OF SOIL, INCLUDING TOP SOIL SHOULD BE COMPACTED TO 80% 85% OF THE MAXIMUM STANDARD PROCTOR DENSITY, IN AREAS OUTSIDE THE PARKING LOT THAT WILL RECEIVE VEGETATION. THIS IS PARTICULARLY IMPORTANT IN CUT SLOPE AND EMBANKMENT AREAS. IN PAVEMENT AND ISLAND AREAS, IT IS RECOMMENDED THAT THE SOIL BE COMPACTED TO 98% AND 95% OF THE MAXIMUM STANDARD PROCTOR DENSITY RESPECTIVELY; THE LAST COMPACTED LAYER MAY BE SCARIFIED TO IMPROVE THE SOIL GROWTH CHARACTERISTICS.
- 7. ALL DEWATERING ACTIVITIES SUCH AS PUMPING DOWN OF FLOODED FOUNDATION AND UTILITY TRENCHES MUST PASS THROUGH THE RETROFITTED DETENTION BASIN OR A SEDIMENT CONTROL PRACTICE PRIOR TO LEAVING THE SITE.
- 18. SILT FENCE AND OTHER PERIMETER EROSION CONTROL MEASURES SHOWN OFF LIMITS OF DISTURBANCE FOR CLARITY PURPOSES ONLY. CONTRACTOR TO ENSURE PERIMETER EROSION CONTROL MEASURES ARE PLACED AT THE LIMITS OF DISTURBANCE. ANY DISCREPANCIES SHOULD BE BROUGHT TO THE ENGINEER PRIOR TO PLACEMENT OF ANY EROSION CONTROL MEASURES.

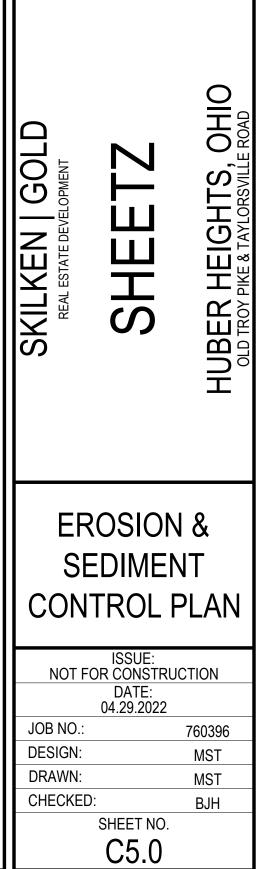
SWPPP MAINTENANCE NOTES

- ALL CONTROL MEASURES STATED IN THE SWPPP SHALL BE MAINTAINED IN FULLY FUNCTIONAL CONDITION UNTIL TEMPORARY OR PERMANENT STABILIZATION OF THE SITE IS ACHIEVED. ALL EROSION AND SEDIMENTATION CONTROL MEASURES SHALL BE INSPECTED BY A QUALIFIED PERSON IN ACCORDANCE TO THE CONTRACT DOCUMENTS OR THE APPLICABLE PERMIT, WHICHEVER IS MORE STRINGENT, AND REPAIRED ACCORDING TO THE FOLLOWING:
- INLET PROTECTION DEVICES AND CONTROLS SHALL BE REPAIRED OR REPLACED WHEN THEY SHOW SIGNS OF UNDERMINING AND OR DETERIORATION. INLET PROTECTION DEVICES SHOULD BE ROUTINELY CLEANED AND MAINTAINED. 3. ALL SEEDED AREAS SHALL BE CHECKED REGULARLY TO ENSURE THAT A
- FERTILIZED, WATERED, AND RESEEDED AS NEEDED. MINIMIZE OFF-SITE SEDIMENT TRACKING OF VEHICLES BY THE USE OF STONE MATERIAL IN ALL CONSTRUCTION ENTRANCES, ALONG WITH REGULARLY SCHEDULED SWEEPING/GOOD HOUSEKEEPING. STABILIZED CONSTRUCTION ENTRANCES TO BE PROPERLY MAINTAINED BY GENERAL CONTRACTOR AND IN GOOD WORKING ORDER AT ALL TIMES; THIS MAY REQUIRE PERIODIC TOP DRESSING OF THE STONE AS CONDITIONS DFMAND
- THE TEMPORARY PARKING AND STORAGE AREA SHALL BE KEPT IN GOOD CONDITION (SUITABLE FOR PARKING AND STORAGE) BY GENERAL CONTRACTOR. THIS MAY REQUIRE PERIODIC TOP DRESSING OF THE TEMPORARY PARKING AS CONDITIONS DEMAND.
- CONTRACTORS AND SUBCONTRACTORS WILL BE RESPONSIBLE FOR REMOVING ALL SEDIMENT FROM THE SITE, AND STORM SEWER SYSTEMS. SEDIMENT DEPOSITION DURING SITE STABILIZATION MUST ALSO BE REMOVED.
- STONE CONSTRUCTION EXIT TO BE MAINTAINED BY GENERAL CONTRACTOR UNTIL SITE HAS BEEN PAVED OR IS NO LONGER REQUIRED.

OF CAS STATION AND CONVENIENCE STORE. THE SUBJECT	SWPPP LEGEND		
LOPMENT IS PAD READY FOR CONSTRUCTION. LIMITS OF DISTURBANCE ATOR BEFORE WORK IS TO BEGIN. IN MEASURES INCLUDING SILT FENCE, CONSTRUCTION EXIT, LIMITS OF DISTURBANCE ATOR BEFORE WORK IS TO BEGIN. LIMITS OF DISTURBANCE CONCRETE WASHOUT EDING OF DISTURBED AREAS WHICH ARE INACTIVE. CONSTRUCTION. CONSTRUCTION. CONSTRUCTION. CONSTRUCTION. CONSTRUCTION. CONSTRUCTION. CONSTRUCTION BASED ON SITE CONDITIONS. CONTRACTOR TO SEQUENCE OF CONSTRUCTION. CONSTRUCTION BASED ON SITE CONDITIONS. CONTRACTOR TO SEQUENCE OF CONSTRUCTION. CONSTRUCTION. CONSTRUCTION. CONSTRUCTION BASED ON SITE CONDITIONS. CONTRACTOR TO SEQUENCE OF CONSTRUCTION. CONSTRUCTION BASED ON SITE CONDITIONS. CONTRACTOR TO CONSTRUCTION CONCENTRUCTION. CONSTRUCTION B	EXISTING CT NARRATIVE: REFER TO C1.1 FOR EXISTING FEATURE PROPOSED MAJOR CONT 960 MAJOR CONT 962 MINOR CONT 962 MINOR CONT 962 MINOR CONT 962 STORM SEWE *ORE. THE SUBJECT SF SILT FENCE	rour our valk er www.cesoinc.com	
DL MEASURES INCLUDING SILT FENCE, CONSTRUCTION EXIT, EDING OF DISTURBED AREAS WHICH ARE INACTIVE. CONSTRUCTION. CONSTRUCTION. CE CONSTRUCTION. CE CE CE CE CE CE CE CONCRETE WASHOUT CE CE CE CE CE CONCRETE WASHOUT CE CE CE CE CE CE CE CE CE CE	CTION. STABILIZED C		
EDING OF DISTURBED AREAS WHICH ARE INACTIVE. CCE STABILIZED CONSTRUCTION CCE STABILIZED CONSTRUCTION ENTRANCE TS TEMPORARY SEEDING PREPARATION TE FLATWORK. CONSTRUCTION BASED ON SITE CONDITIONS. CONTRACTOR TO SEQUENCE OF CONSTRUCTION. CONSTRUCTION BASED ON SITE CONDITIONS. CONTRACTOR TO CONSTRUCTION.		IASHOUT	
TE FLATWORK. DC DANDY CURB (INLET PROTECTION) DB DANDY BAG (INLET PROTECTION) H H H H H H H H H H H H H	E INACTIVE. CE STABILIZED C ENTRANCE TS TEMPORARY		
SEQUENCE OF CONSTRUCTION.	\sim		•

- GOOD STANDING OF GRASS IS MAINTAINED. AREAS SHOULD BE

- HAZARDOUS OR PETROLEUM WASTES. ALL CONTAINERS MUST BE COVERED AND LEAK-PROOF. ALL WASTE MATERIAL SHALL BE DISPOSED OF AT FACILITIES APPROVED FOR THE PERTINENT MATERIAL
- 10. BRICKS, HARDENING CONCRETE AND SOIL WASTE SHALL BE FREE FROM CONTAMINATION WHICH MAY LEACH CONSTITUENTS TO WATERS OF THE STATE.
- 11. CLEAN CONSTRUCTION WASTES THAT WILL BE DISPOSED INTO THE PROPERTY SHALL BE SUBJECT TO ANY LOCAL PROHIBITIONS FROM THIS TYPE OF DISPOSAL.
- 12. ALL CONSTRUCTION AND DEMOLITION DEBRIS (C&DD) WASTE SHALL BE DISPOSED OF IN AN OHIO EPA APPROVED C&DD LANDFILL AS REQUIRED BY OHIO REVISED CODE 3714. CONSTRUCTION DEBRIS MAY BE DISPOSED OF ON-SITE, BUT DEMOLITION DEBRIS MUST BE DISPOSED IN AN OHIO EPA APPROVED LANDFILL. ALSO, MATERIALS WHICH CONTAIN ASBESTOS MUST COMPLY WITH AIR POLLUTION REGULATIONS (SEE OHIO ADMINISTRATIVE CODE 3745-20).
- 13. AREA SHALL BE DESIGNATED BY CONTRACTOR AND SHOWN ON SWPPP MAP FOR MIXING OR STORAGE OF COMPOUNDS SUCH AS FERTILIZERS. LIME ASPHALT. OR CONCRETE. THESE DESIGNATED AREAS SHALL BE LOCATED AWAY FROM WATERCOURSES, DRAINAGE DITCHES, FIELD DRAINS, OR OTHER STORMWATER DRAINAGE AREA.
- 14. EQUIPMENT FUELING & MAINTENANCE SHALL BE IN DESIGNATED AREAS ONLY.
- 15. A SPILL PREVENTION CONTROL AND COUNTERMEASURE (SPCC) PLAN MUST BE DEVELOPED FOR SITES WITH ONE ABOVE-GROUND STORAGE TANK OF 660 GALLONS OR MORE, TOTAL ABOVE-GROUND STORAGE OF 1,330 GALLONS OR BELOW-GROUND STORAGE OF 4,200 GALLONS OF FUEL.
- 16. ALL DESIGNATED CONCRETE WASHOUT AREAS SHALL BE LOCATED AWAY FROM WATERCOURSES, DRAINAGE DITCHES, FIELD DRAINS OR OTHER STORMWATER DRAINAGE AREAS.
- 17. ALL CONTAMINATED SOIL MUST BE TREATED AND/OR DISPOSED IN AN OHIO EPA APPROVED SOLID WASTE MANAGEMENT FACILITY OR HAZARDOUS WASTE TREATMENT, STORAGE OR DISPOSAL FACILITIES.
- 18. THE CONTRACTOR SHALL CONTACT THE OHIO EPA, THE LOCAL FIRE DEPARTMENT AND THE LOCAL EMERGENCY PLANNING COMMITTEE IN THE EVENT OF A PETROLEUM SPILL (>25 GALLONS) OR THE PRESENCE OF SHEEN.
- 19. OPEN BURNING IS NOT PERMITTED ON THE SITE.
- 20. CONTRACTOR TO ENSURE STREETS SHALL BE CLEARED OF DEBRIS FROM SITE AND SWEPT CLEAN ON AN AS NEEDED BASIS.

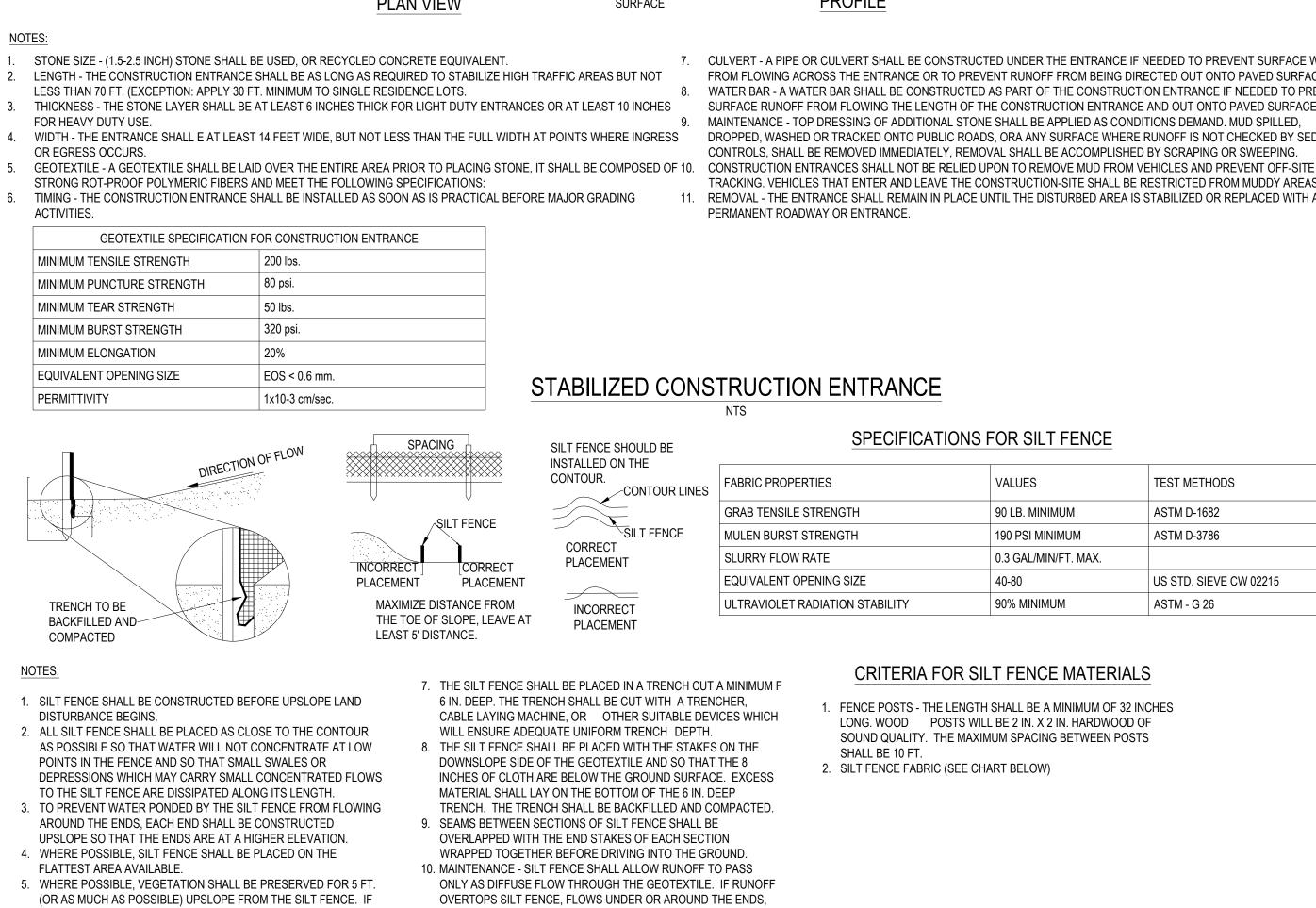

AND ALL OTHER AGENCIES WHICH MIGHT HAVE

W:\PROJECTS\SKILKEN GOLD\760396 SHEETZ - HUBER HEIGHTS, OH (TAYLORSVILLE RD)\03-CIVIL\PLAN\CONSTRUCTION\760396_C60-ESC.DWG - 8/16/2022 2:16 PM

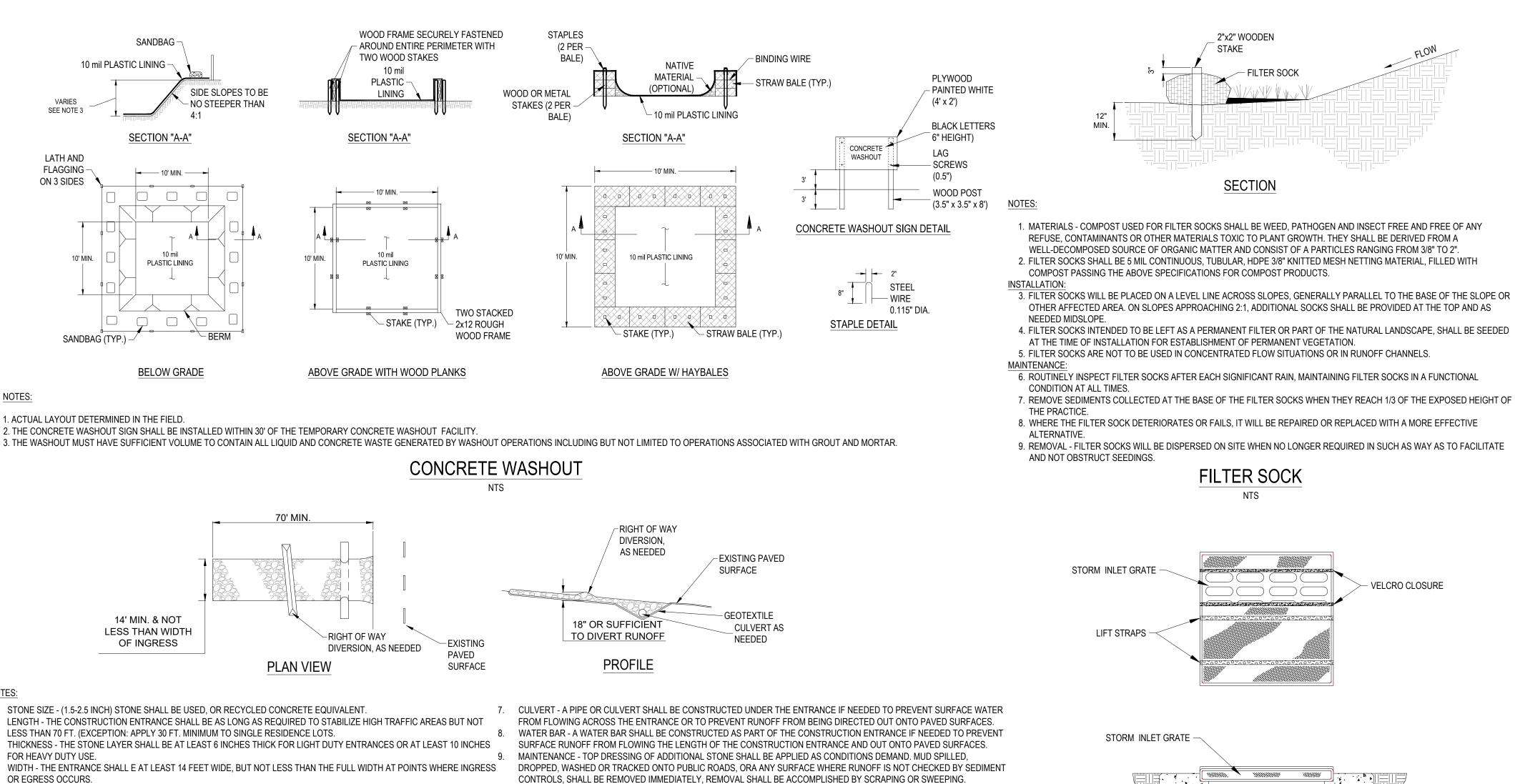
UNDERGROUND UTILITIES INVOLVING THIS

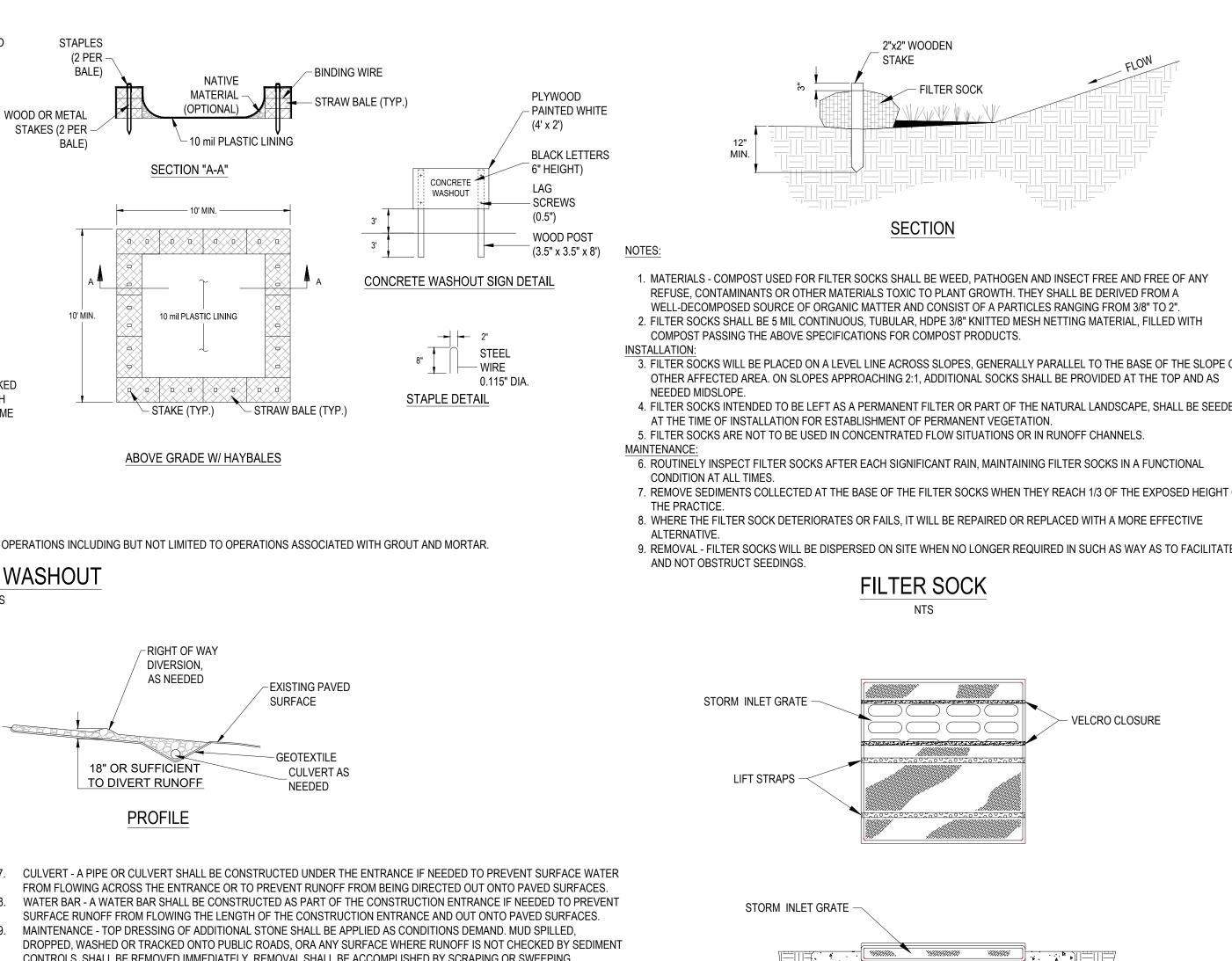
PROJECT AND ARE NONMEMBERS OF OHIO

UTILITIES PROTECTION SERVICE


JOSHUA

I ONG


F-8614


2022-8-18

4.

- NOTES: 1. ACTUAL LAYOUT DETERMINED IN THE FIELD. 2. THE CONCRETE WASHOUT SIGN SHALL BE INSTALLED WITHIN 30' OF THE TEMPORARY CONCRETE WASHOUT FACILITY.

- PERMANENT ROADWAY OR ENTRANCE.

STABILIZED CONSTRUCTION ENTRANCE

GRAB TENSILE STRENGTH
MULEN BURST STRENGTH
SLURRY FLOW RATE
EQUIVALENT OPENING SIZE
ULTRAVIOLET RADIATION STABILITY

NOTES:

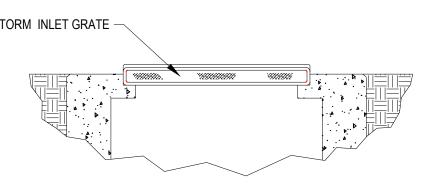
- 1. SILT FENCE SHALL BE CONSTRUCTED BEFORE UPSLOPE LAND
- 2. ALL SILT FENCE SHALL BE PLACED AS CLOSE TO THE CONTOUR
- 3. TO PREVENT WATER PONDED BY THE SILT FENCE FROM FLOWING
- 4. WHERE POSSIBLE, SILT FENCE SHALL BE PLACED ON THE FLATTEST AREA AVAILABLE.
- VEGETATION IS REMOVED, IT SHALL BE ESTABLISHED WITHIN 7 DAYS FROM THE INSTALLATION OF THE SILT FENCE.
- 6. THE HEIGHT OF THE SILT FENCE SHALL BE A MINIMUM OF 16 IN. ABOVE THE ORIGINAL GROUND SURFACE.
- OR IN ANY OTHER WAY BECOMES A CONCENTRATED FLOW, ONLY OF THE FOLLOWING SHALL BE PERFORMED, AS APPROPRIATE: 1) THE LAYOUT OF THE SILT FENCE SHALL BE CHANGED, 2) ACCUMULATED SEDIMENT SHALL BE REMOVED, OR
- 3) OTHER PRACTICES SHALL BE INSTALLED.

SILT FENCE DETAIL

NTS

- CRITERIA FOR SILT FENCE MATERIALS
- SHALL BE 10 FT.

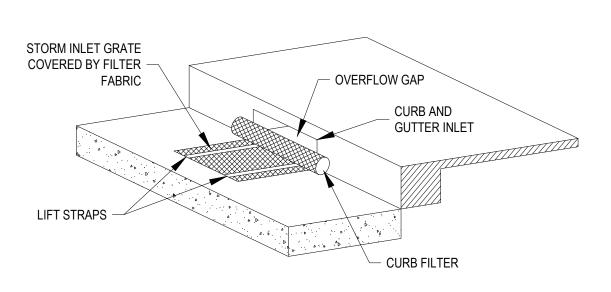
TRACKING. VEHICLES THAT ENTER AND LEAVE THE CONSTRUCTION-SITE SHALL BE RESTRICTED FROM MUDDY AREAS. 11. REMOVAL - THE ENTRANCE SHALL REMAIN IN PLACE UNTIL THE DISTURBED AREA IS STABILIZED OR REPLACED WITH A


TEST METHODS

ASTM D-1682

ASTM D-3786

ASTM - G 26


US STD. SIEVE CW 02215

NOTE:

INLET PROTECTION SHALL BE DANDY BAG OR APPROVED OTHER.

1. FENCE POSTS - THE LENGTH SHALL BE A MINIMUM OF 32 INCHES LONG. WOOD POSTS WILL BE 2 IN. X 2 IN. HARDWOOD OF SOUND QUALITY. THE MAXIMUM SPACING BETWEEN POSTS

2. SILT FENCE FABRIC (SEE CHART BELOW)

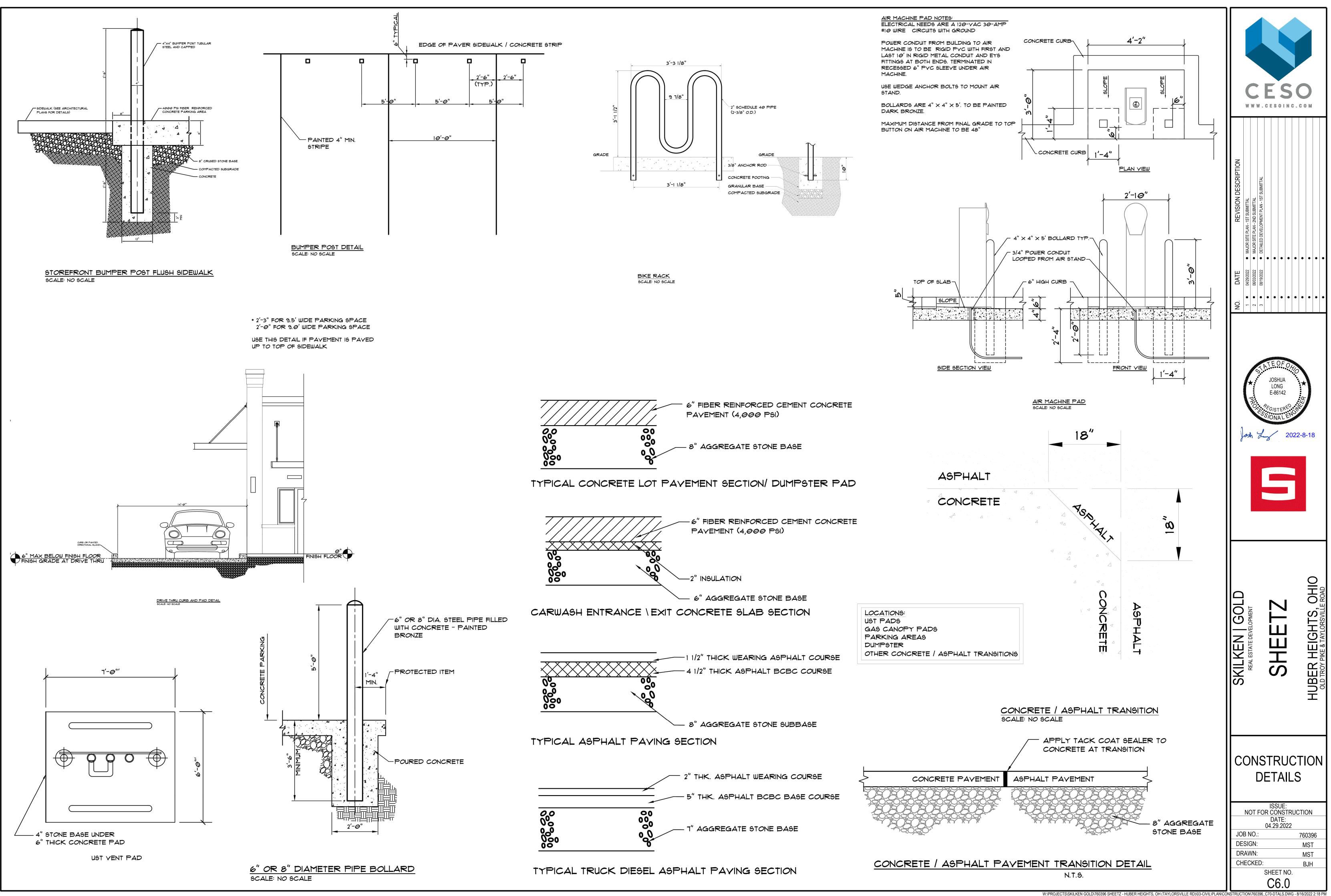
VALUES

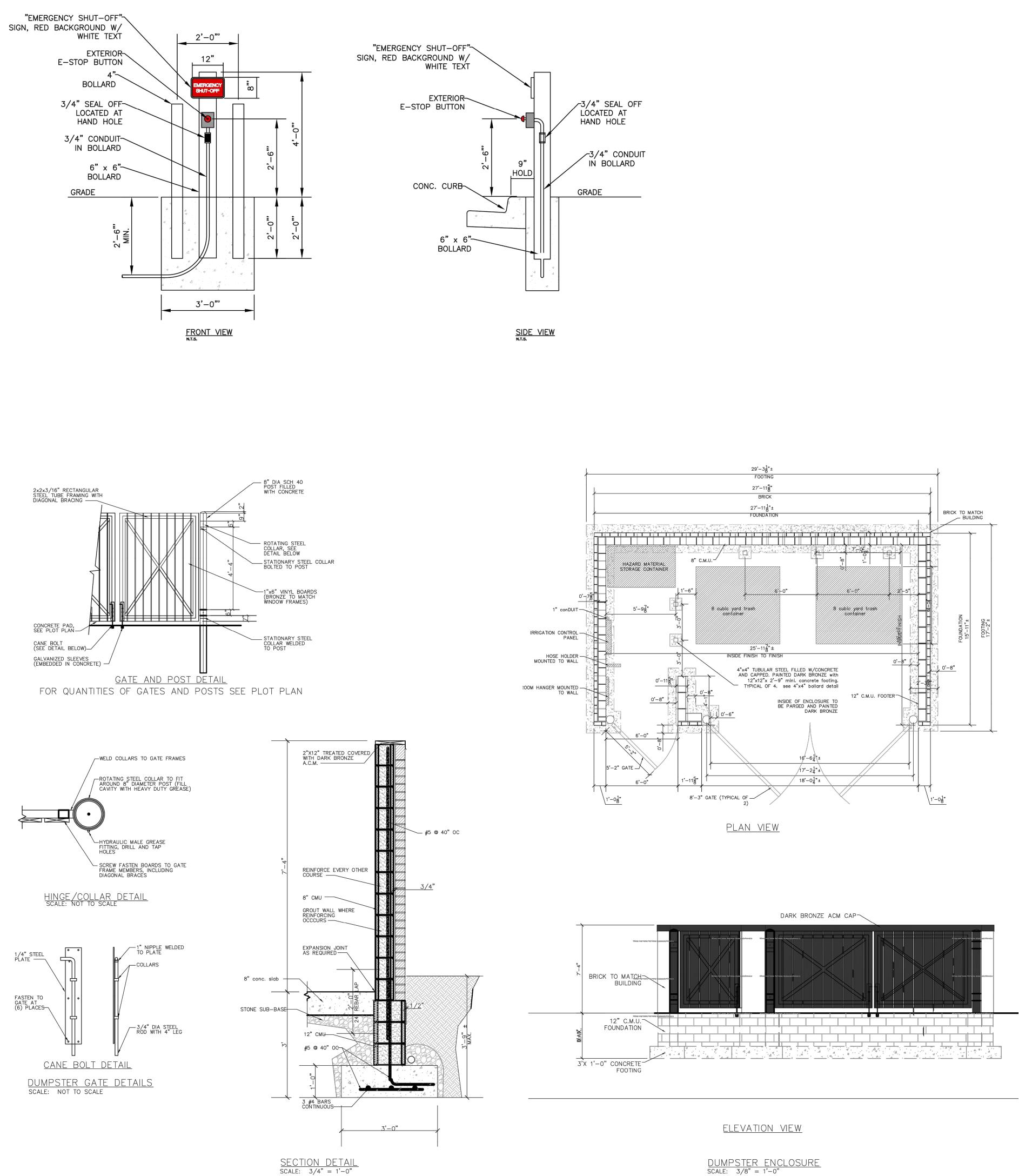
40-80

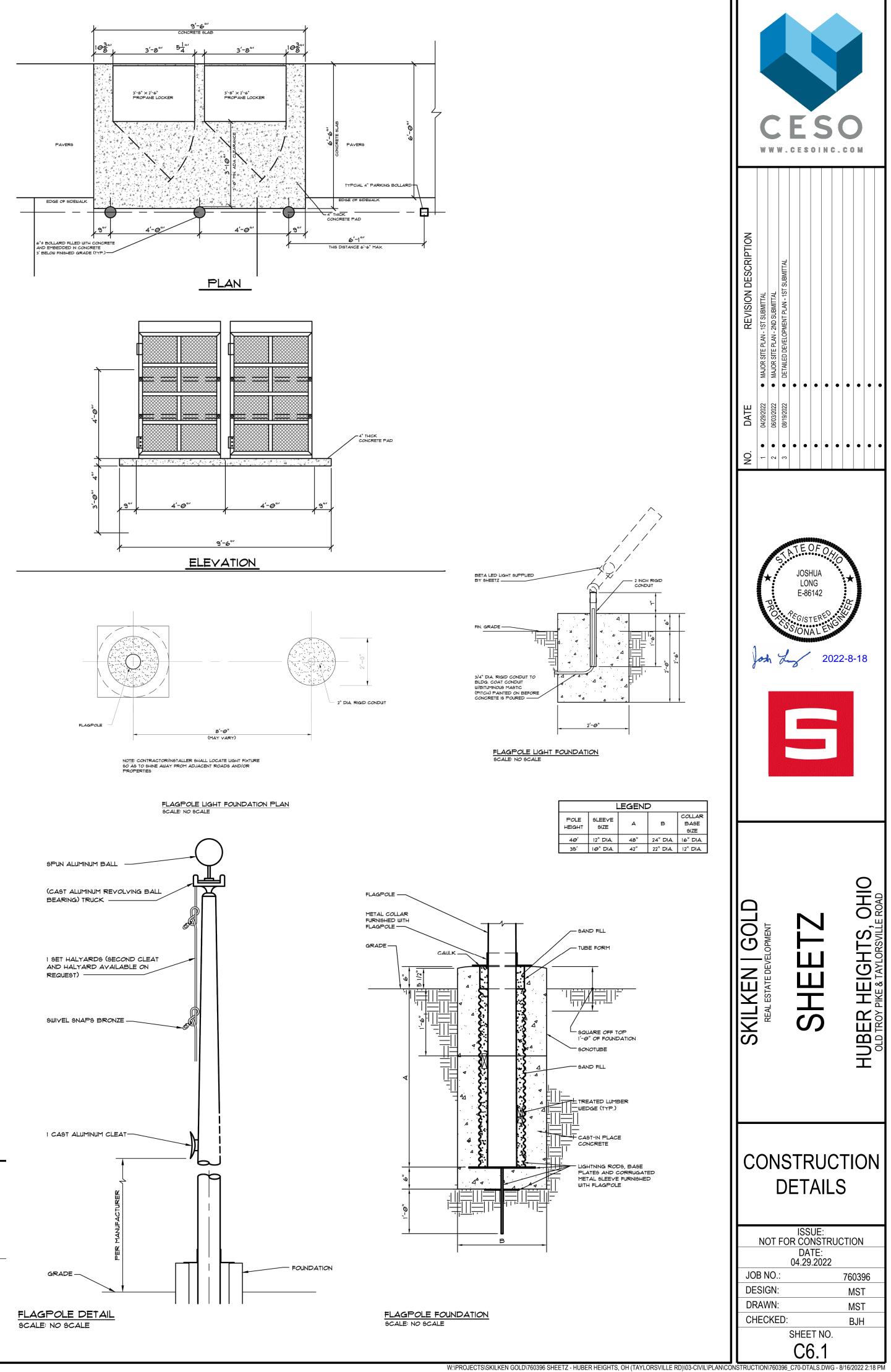
90 LB. MINIMUM

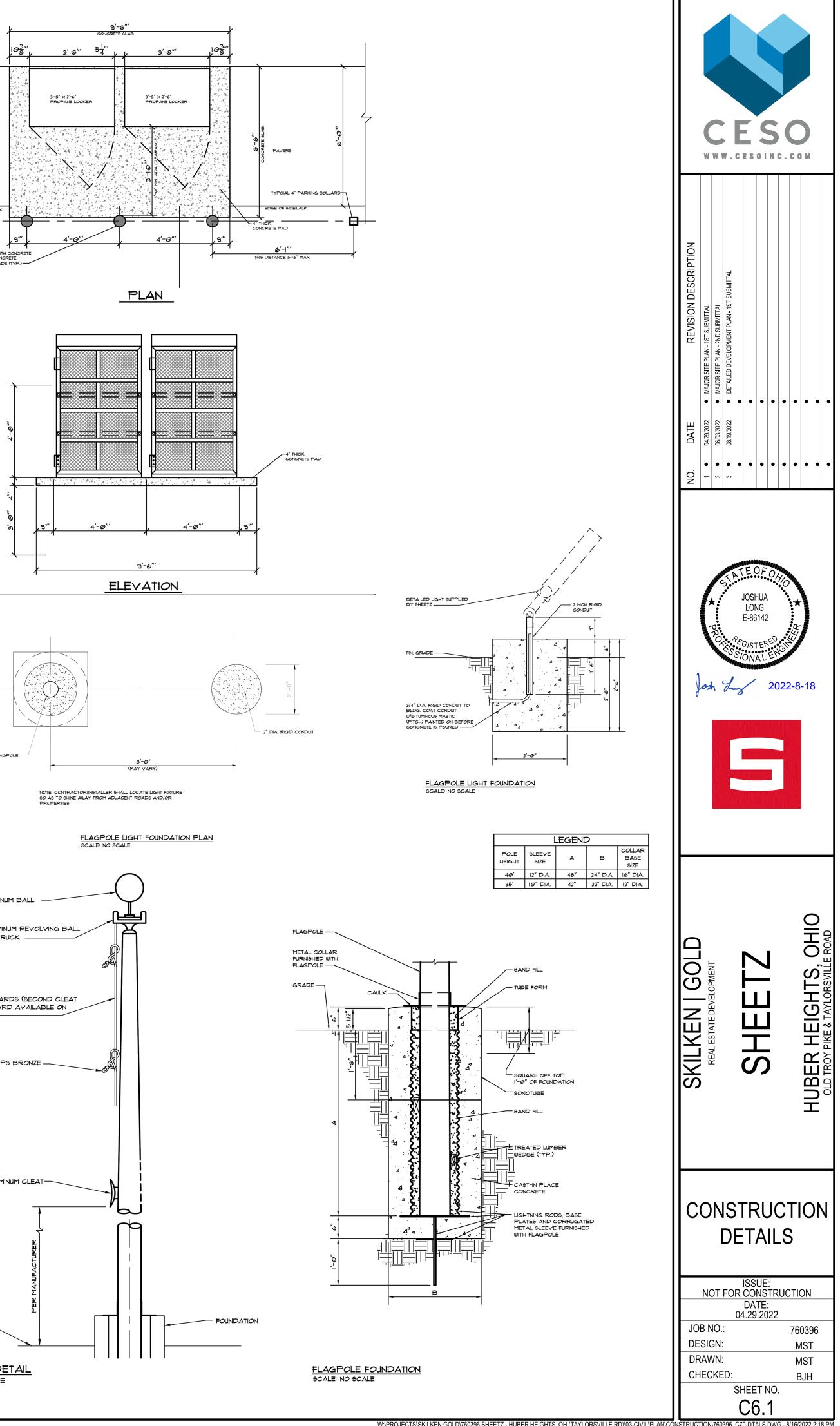
190 PSI MINIMUM

90% MINIMUM

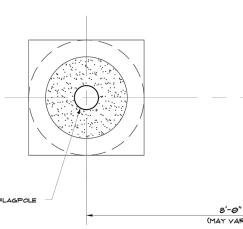

0.3 GAL/MIN/FT. MAX.

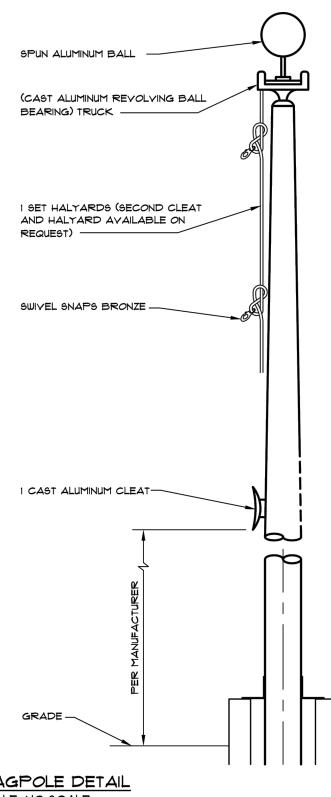

NOTE:

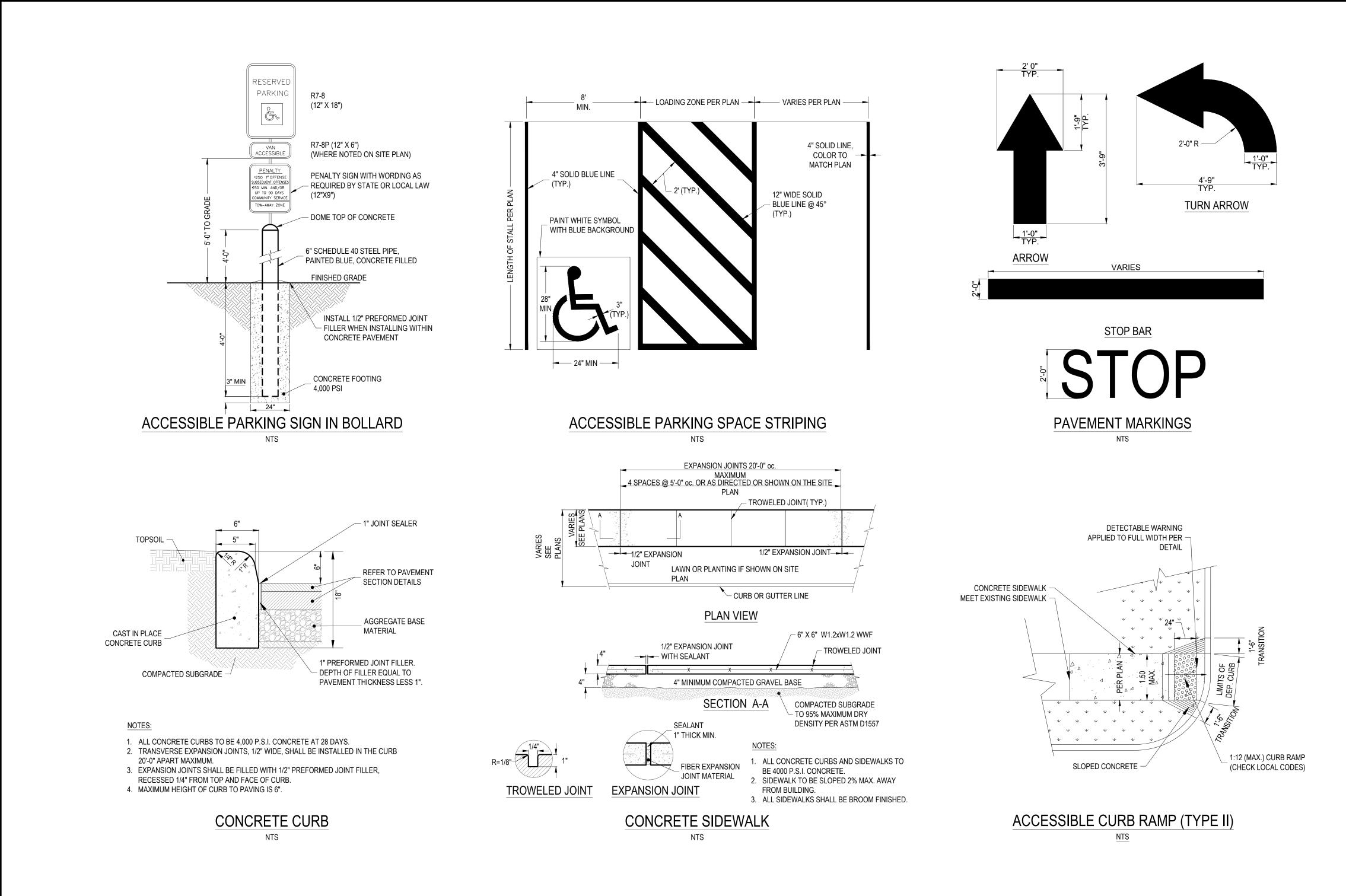

INLET PROTECTION SHALL BE DANDY CURB BAG OR APPROVED OTHER.

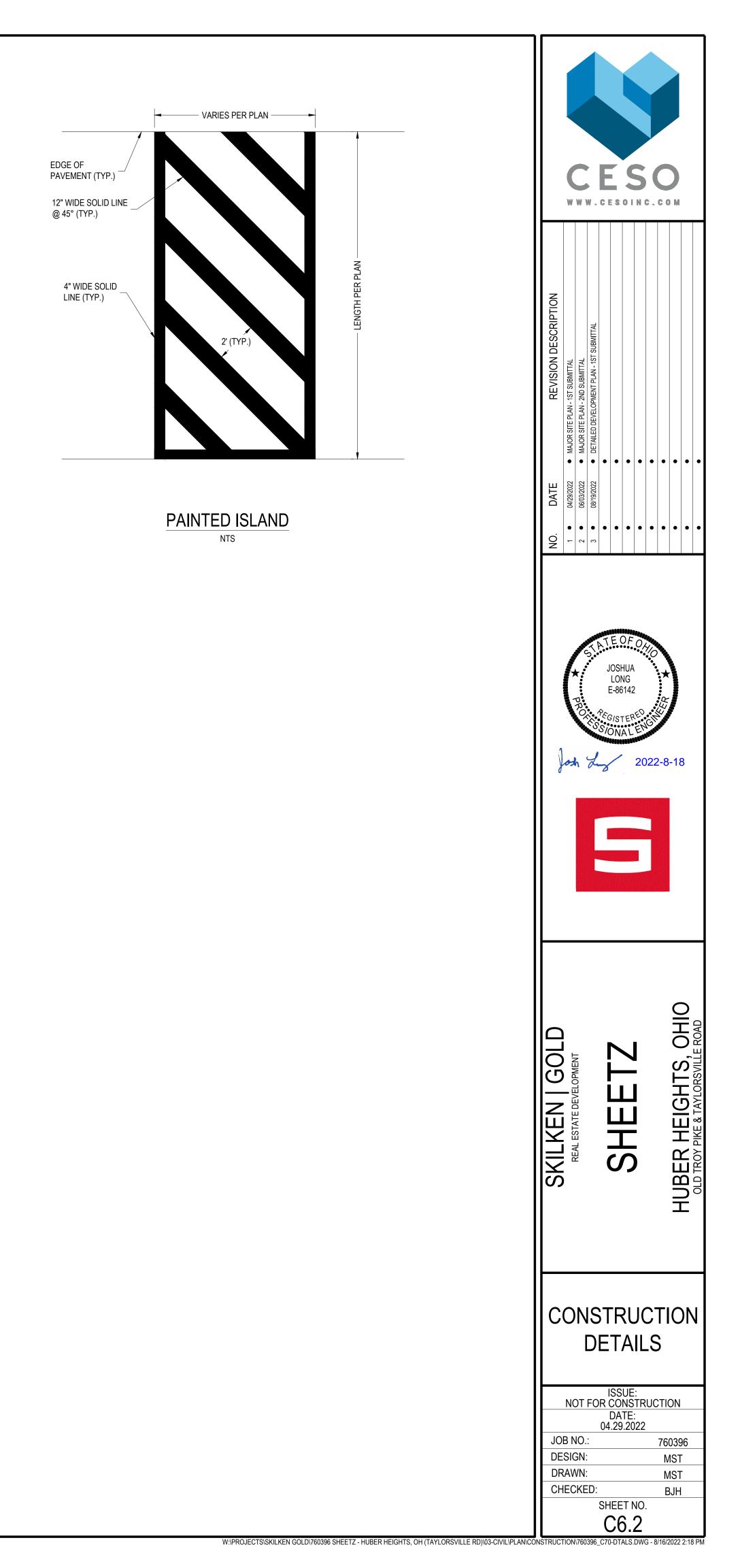

CURB INLET PROTECTION NTS

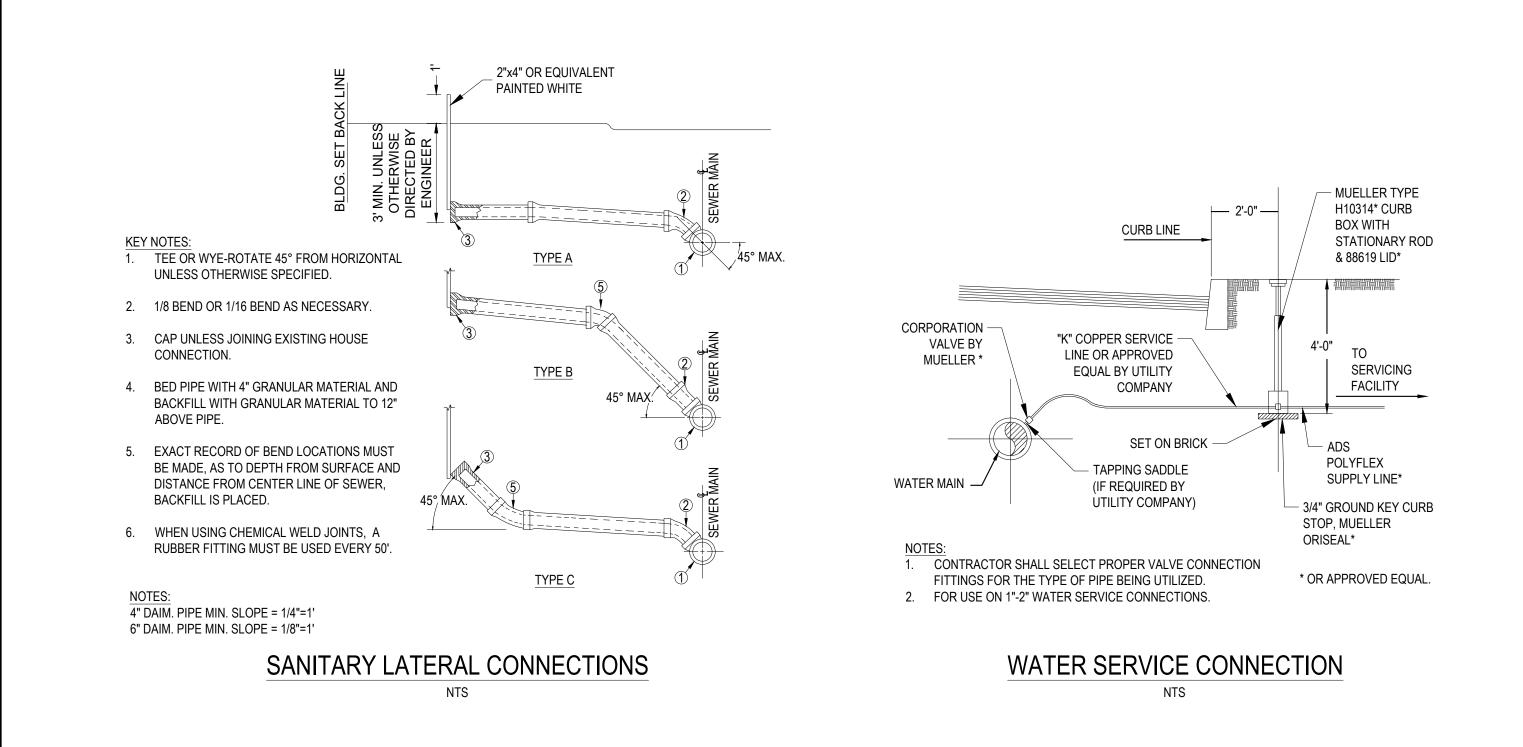
). DATE REVISION DESCRIPTION	04/29/2022 MAJOR SITE PLAN - 15T SUBMITTAL 06/03/2022 MAJOR SITE PLAN - 2ND SUBMITTAL 00000000 DATAULANDALIZED AN 2010 NUMBER			•
	Je	* PROFIL	ATEO/ JOSHU LONG E-8614	42	-8-18
	SKILKEN GOLD	REAL ESTATE DEVELOPMENT	SHFFTZ		HUBER HEIGHTS, OHIO OLD TROY PIKE & TAYLORSVILLE ROAD
W:IPROJECTS\SKILKEN GOLD\760396 SHEETZ - HUBER HEIGHTS, OH (TAYLORSVILLE RD)103-CIVIL\PLANIC	JOB DES DRA CHE	SE C D NOT F B NO.: BIGN: AWN: ECKEE	SHEET	IEN RO AILS STRUC E: 2022	T L TION 760396 MST MST BJH

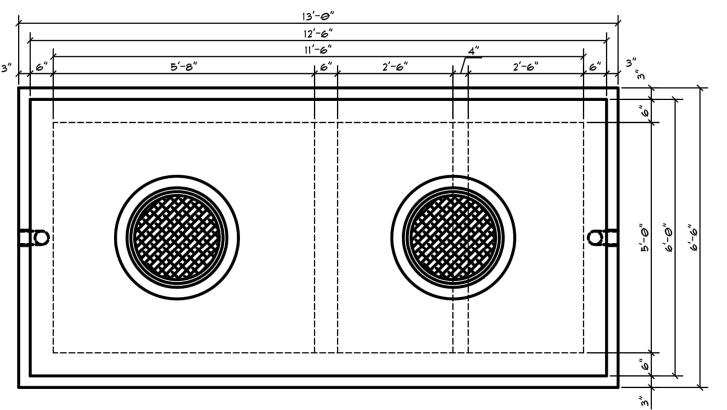


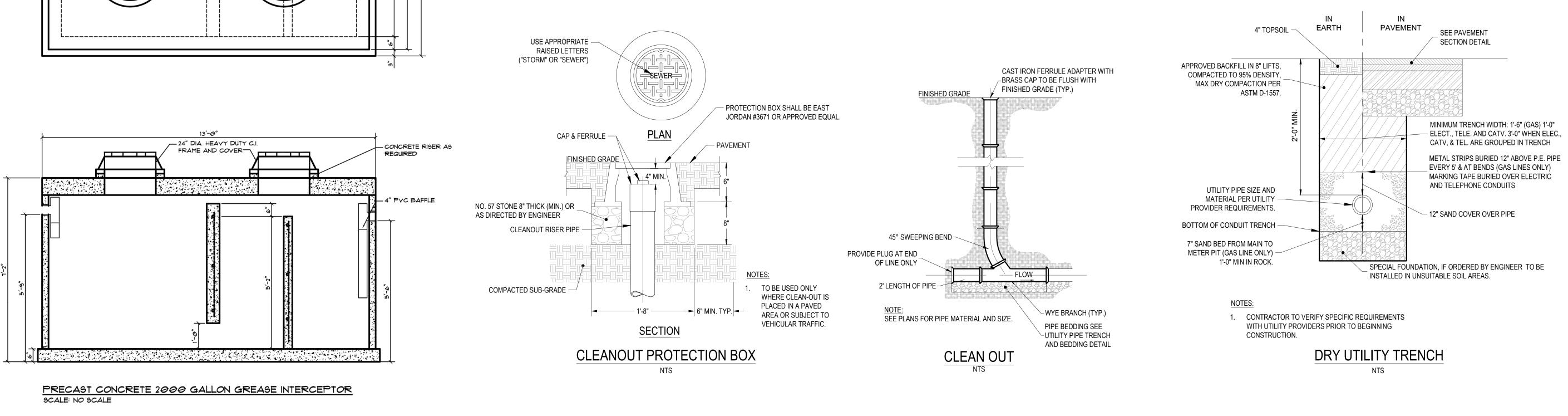


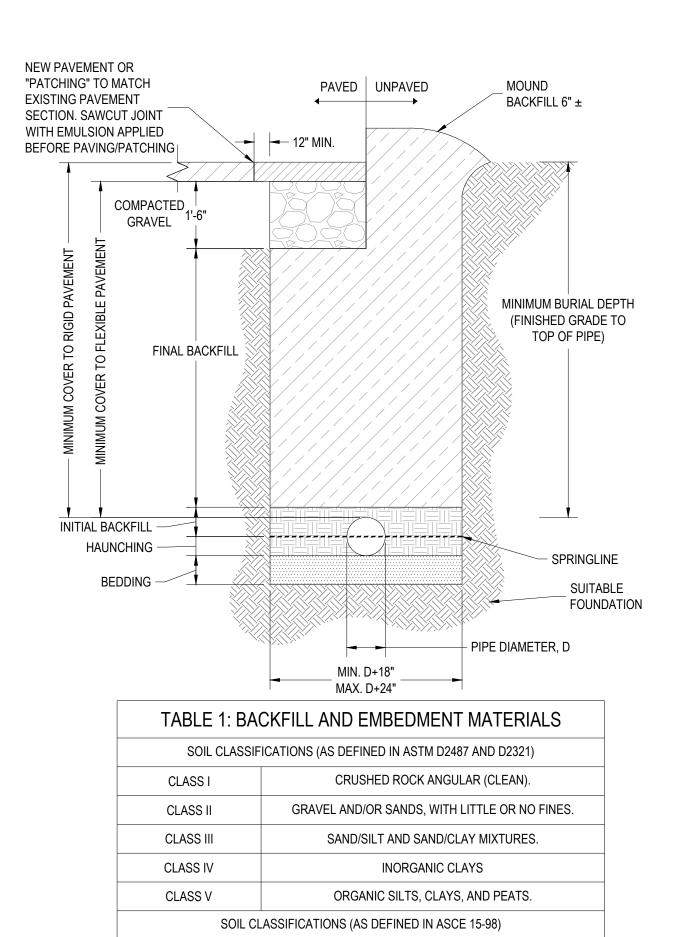












NOTES:

1. IN THE CASE OF TRENCH BOTTOM BEING UNSTABLE, THE CONTRACTOR SHALL REPLACE FOUNDATION WITH SUITABLE

GRAVELLY SAND

SANDY SILT

SILTY CLAY

- MATERIAL AS SPECIFIED BY GEOTECHNICAL ENGINEER. COMPACTION PERCENTAGES SPECIFIED REFER TO STANDARD PROCTOR PERCENT COMPACTION.
- CONTRACTOR TO MANDATE DEWATERING IN TRENCHES DURING CONSTRUCTION.
- TRENCHING OPERATIONS SHALL CONFORM TO ALL OSHA REQUIREMENTS.

CATEGORY I

CATEGORY II

CATEGORY III

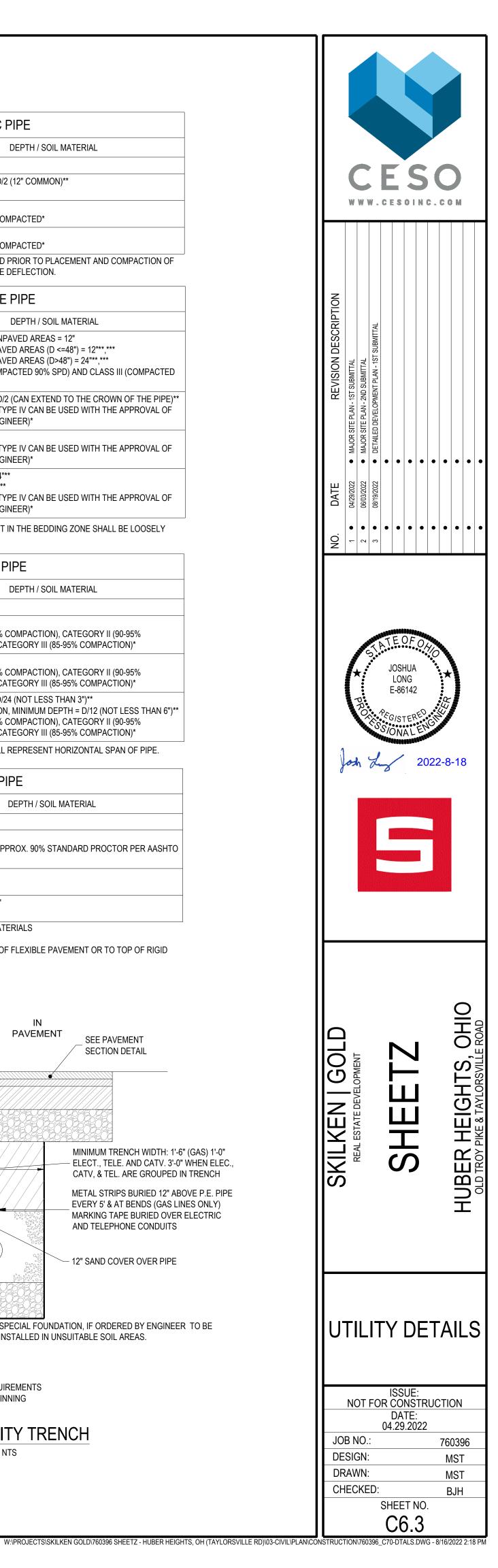
FOR HDPE AND PVC WATERLINES AND LONG SEWER LATERALS, INSTALL METALLIC LOCATOR TAPE 12" (MIN) AND 18" (MAX) BELOW FINISHED SUBGRADE ELEVATION. INSTALL TRACER WIRE LOCATED AT THE TOP OF THE PIPE WITHIN THE INITIAL BACKFILL.

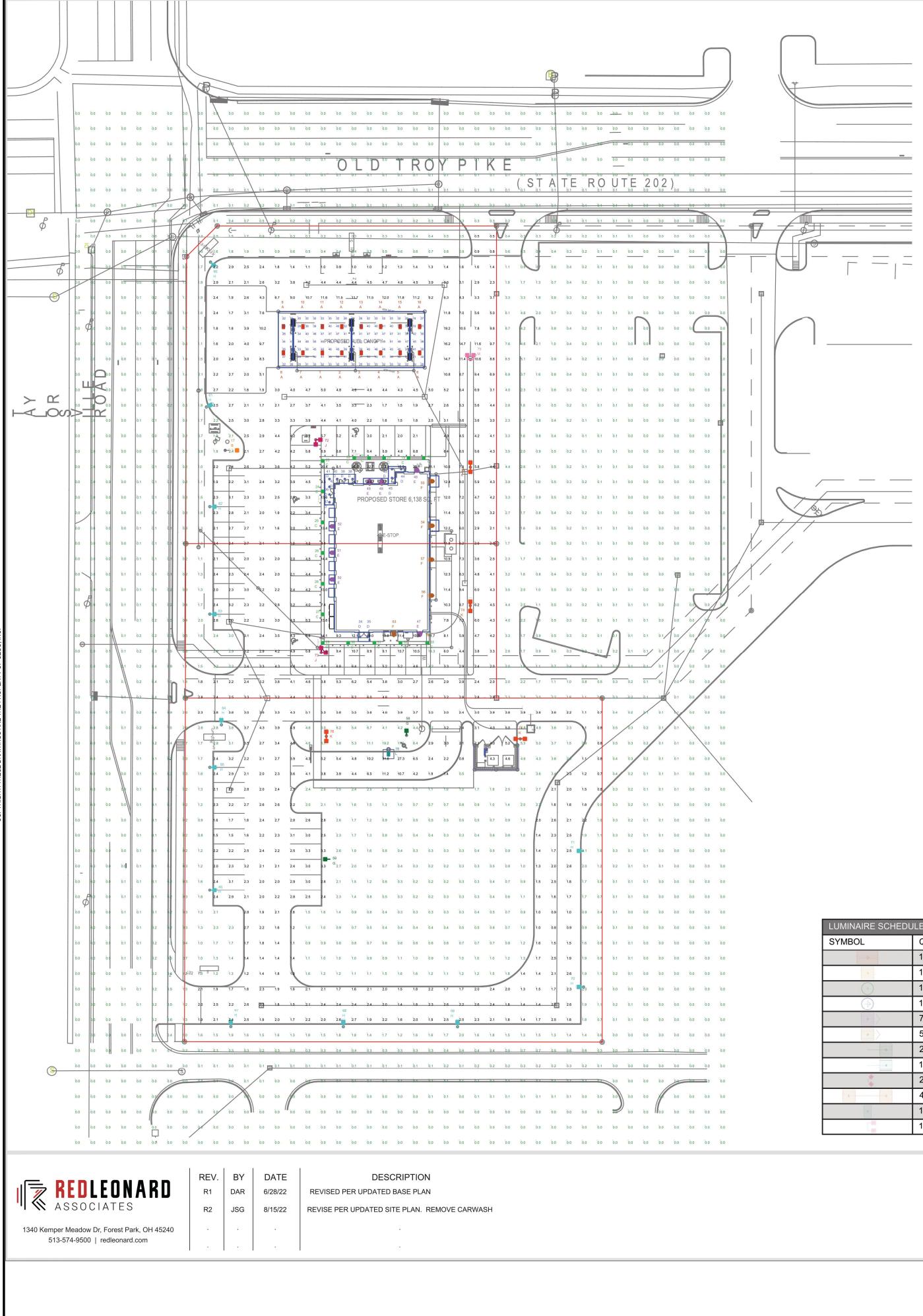
	PVC PIPE
ZONE	DEPTH / SOIL MATERIAL
FINAL BACKFILL	CLASS I-V*
INITIAL BACKFILL	MINIMUM DEPTH = D/2 (12" COMMON)** CLASS I, II, AND III*
HAUNCHING	DEPTH = D/2** CLASS I, II, AND III COMPACTED*
BEDDING	DEPTH = 4-6" CLASS I, II, AND III COMPACTED*
	MUST BE COMPACTED PRIOR TO PLACEMENT AND COMPACTION OF FILLS TO PREVENT PIPE DEFLECTION.

HDPE PIPE

ZONE	DEPTH / SOIL MATERIAL
FINAL BACKFILL	MINIMUM COVER UNPAVED AREAS = 12" MINIMUM COVER PAVED AREAS (D <=48") = 12"**,*** MINIMUM COVER PAVED AREAS (D>48") = 24"**,*** CLASS I AND II (COMPACTED 90% SPD) AND CLASS III (COMPACTED 95% SPD)*
INITIAL BACKFILL	MINIMUM DEPTH = D/2 (CAN EXTEND TO THE CROWN OF THE PIPE)** CLASS I, II, AND III (TYPE IV CAN BE USED WITH THE APPROVAL OF GEOTECHNICAL ENGINEER)*
HAUNCHING	DEPTH = D/2** CLASS I, II, AND III (TYPE IV CAN BE USED WITH THE APPROVAL OF GEOTECHNICAL ENGINEER)*
BEDDING	DEPTH (D <= 24") = 4"** DEPTH (D > 24") = 6"** CLASS I, II, AND III (TYPE IV CAN BE USED WITH THE APPROVAL OF GEOTECHNICAL ENGINEER)*

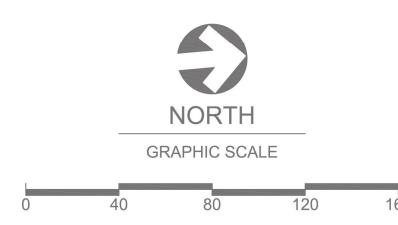
NOTE: THE MIDDLE $\frac{1}{3}$ BENEATH THE PIPE INVERT IN THE BEDDING ZONE SHALL BE LOOSELY PLACED


	RC PIPE
ZONE	DEPTH / SOIL MATERIAL
FINAL BACKFILL	CATEGORY I, II, III*
INITIAL BACKFILL	DEPTH = D/2** CATEGORY I (85-95% COMPACTION), CATEGORY II (90-95% COMPACTION), OR CATEGORY III (85-95% COMPACTION)*
HAUNCHING	DEPTH = D/2** CATEGORY I (85-95% COMPACTION), CATEGORY II (90-95% COMPACTION), OR CATEGORY III (85-95% COMPACTION)*
BEDDING	MINIMUM DEPTH = D/24 (NOT LESS THAN 3")** IF ROCK FOUNDATION, MINIMUM DEPTH = D/12 (NOT LESS THAN 6")** CATEGORY I (85-95% COMPACTION), CATEGORY II (90-95% COMPACTION), OR CATEGORY III (85-95% COMPACTION)*


NOTE: FOR ELLIPTICAL AND ARCH PIPE, D SHALL REPRESENT HORIZONTAL SPAN OF PIPE.

	DI PIPE
ZONE	DEPTH / SOIL MATERIAL
FINAL BACKFILL	CLASS I-V*
INITIAL BACKFILL	DEPTH = D/2** CLASS I, II, AND III (APPROX. 90% STANDARD PROCTOR PER AASHTO T-99)*
HAUNCHING	DEPTH = D/2** CLASS I, II, AND III*
BEDDING	MINIMUM DEPTH = 4" CLASS I, II, AND III*
*SEE TABLE 1 FOR SPECIE	ICATIONS ON SOIL MATERIALS

*SEE TABLE 1 FOR SPECIFICATIONS ON SOIL MATERIALS ** D = PIPE DIAMETER


*** MEASURED FROM TOP OF PIPE TO BOTTOM OF FLEXIBLE PAVEMENT OR TO TOP OF RIGID PAVEMENT.

RIGHT: THESE DRAWINGS ARE THE PROPERTY OF CES

	OCATION SUMMA	
LUM NO.	LABEL	MTG. HT.
1	A	17.54
2	A	17.54
3	A	17.54
4	A	17.54
5	A	17.54
6	A	17.54
7	А	17.54
8	А	17.54
9	A	19.02
10	А	19.02
11	А	19.02
12	А	19.02
13	А	19.02
14	A	19.02
15	A	19.02
16	A	19.02
17	В	1
18	С	3
19	С	3
20	С	3
21	С	3
22	С	3
23	С	3
24	С	3
25	С	3
26	С	3
27	С	3
28	С	3
29	С	3
30	С	3
31	С	3
32	С	3
33	С	3
34	D	11.33
35	D	11.33
36	D	11.33
37	D	11.33
38	D	11.33
39	D	11.33

THIS SITE IS LOCATED IN A REGION WHERE LIGHTING IS REGULATED BY LOCAL ORDINANCES FOOTCANE LABEL SITE PAVE UNDEFINE UNDER CA

LUMINAIRE SCHEDU										
SYMBOL	QTY	LABEL	ARRANGEMENT	LUMENS	LLF	BUG RATING	WATTS/LUMINAIRE	TOTAL WATTS	MANUFACTURER	CATALOG LOGIC
▶	16	A	SINGLE	11213	1.030	B3-U0-G0	99	1584	CREE, INC.	CAN-228-PS-RM-06-E-UL-XX-525-57K
•	1	В	SINGLE	11950	1.040	B4-U0-G0	72	72	Cree Inc	OSQ-ML-B-AA-XX w/PGM-1 + OSQM-B-11L-57K7-N3-UL-NM-XX
(\Rightarrow)	16	С	SINGLE	1441	1.030	B1-U0-G1	22	352	Cree Inc	PWY-EDG-3M-P3-02-E-UL-XX-350-57K
\bigcirc	12	D	SINGLE	484	1.000	N.A.	6.9	82.8	B-K LIGHTING, INC.	BKLT CH-LED-e69-FL-BZP-12 (BY OTHERS)
	7	E	SINGLE	2947	1.030	B1-U0-G1	36	252	CREE, INC.	SEC-EDG-3M-WM-02-E-UL-XX-525
•	5	F	SINGLE	5893	1.030	B2-U0-G2	68	340	CREE, INC.	SEC-EDG-3M-WM-04-E-UL-XX-525
	2	G	SINGLE	11174	1.030	B2-U0-G2	72	144	Cree Inc	OSQ-ML-B-DA-XX + OSQM-B-11L-57K7-4M-UL-NM-XX
4	12	Н	SINGLE	8574	1.030	B1-U0-G2	72	864	Cree Inc	OSQ-ML-B-DA-XX + OSQM-B-11L-57K7-4M-UL-NM-XX-w_OSQ-BLSMF
	2	J	2 @ 90 DEGREES	11174	1.030	B2-U0-G2	72	288	Cree Inc	OSQ-ML-B-DA-XX + OSQM-B-11L-57K7-4M-UL-NM-XX
€ Þ	4	К	BACK-BACK	11174	1.030	B2-U0-G2	72	576	Cree Inc	OSQ-ML-B-DA-XX + OSQM-B-11L-57K7-4M-UL-NM-XX
	1	L	SINGLE	13946	1.030	B3-U0-G1	132	132	Cree, Inc	BXCT9020&/CAN-228-SL-RM-06-E-UL-XX-700 (BRIGHT RED FINISH, ORDERED SEPARATELY)
	1	М	Twin	22098	1.030	B3-U0-G3	132	264	CREE, INC.	OSQ-ML-B-DA-XX + OSQL-B-22L-57K7-4M-UL-NM-XX

ANY SITE PLAN(S), FLOOR PLAN(S), RENDERING(S), LIGHTING LAYOUT(S) AND PHOTOMETRIC PLAN(S) INCLUDING BUT NOT LIMITED TO ANY PROJECT(S) CREATED/PRODUCED BY RED LEONARD ASSOCIATES INC., ARE ONLY INTENDED FOR ILLUSTRATION AND QUOTING PURPOSES ONLY. RED LEONARD ASSOCIATES HAS THE RIGHT TO USE THIRD PARTY LASERS, SCANNERS, AND CAMERAS BUT ACTUAL PROJECT CONDITIONS, DIMENSIONS, AND ACCURACY OF MEASUREMENTS MAY DIFFER FROM THESE OR ANY PARAMETERS. RED LEONARD ASSOCIATES INC. ASSUMES NO LIABILITY FOR WHAT IS CREATED/PRODUCED IN THESE RECREATIONS. THIS INCLUDES BUT IS NOT LIMITED TO THE USE OF, INSTALLATION OF AND/OR INTEGRITY OF EXISTING BUILDING(S), SURROUNDING AREA FOR PRODUCT(S) SUCH AS EXISTING POLE(S), ANCHOR BOLT(S), BASE(S), ARCHITECTURAL AND SIGNAGE STRUCTURE(S), LANDSCAPING PLAN(S), LIGHTING PLAN(S), FIXTURE SELECTION(S) AND PLACEMENT, MATERIAL(S), COLOR ACCURACY, TEXTURE(S), AND ANYTHING ATTRIBUTED TO PHOTO REALISM THAT IS CREATED. FURTHERMORE, RED LEONARD ASSOCIATES INC., DOES NOT ASSUME LIABILITY WHATSOEVER FOR ANY PURCHASES MADE BY CLIENT BEFORE, DURING, OR AT THE CONCLUSION OF THE PUBLISHED WORK. THE CUSTOMS, INSTRUCTIONS, INSTRUCTIONS, PURCHASES, AND INSTALLATIONS OF OBJECTS VIEWED WITHIN THIS DOCUMENT(S) OR PROJUCT IS RESPONSIBLE FOR VERIFYING COMPLIANCE WITH ANY BUT NOT LIMITED TO ALL CODES, PERMITS, RESTRICTIONS, INSTRUCTIONS, PURCHASES, AND INSTALLATIONS OF OBJECTS VIEWED WITHIN THIS DOCUMENT(S) OR PROJECT(S). SYMBOLS ARE NOT DRAWN TO SCALE. SIZE IS FOR CLARITY PURPOSES ONLY. SIZES AND DIMENSIONS ARE APPROXIMATE, ACTUAL MEASUREMENTS MAY VARY. DRAWINGS ARE NOT INTENDED FOR ENGINEERING OR CONSTRUCTION USE. THIS DOCUMENT, ANY RED LEONARD DRAWING(S), OR PROJECT(S) IS NOT TO BE USED AND/OR INTENDED FOR ENGINEERING OR CONSTRUCTION PURPOSES, BUT FOR ILLUSTRATIVE PURPOSES ONLY. ANY LOCATIONS OF EMERGENCY LIGHTING SHOWN WERE PROVIDED BY OTHERS. RED LEONARD ASSOCIATES IS NOT RESPONSIBLE FOR INSUFFICIENT LIGHTING DURING AN EMERGENCY EVENT. ANY USE OF THIS DOCUMENTATION AND/OR OTHER ARTICLES PRODUCED BY RED LEONA

TILT
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
166
0
0
0
0
0
0
0
0
0
0 0
0
0
0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0

UM NO.	LABEL	MTG. HT.	TILT
40	D	11.33	0
41	D	11.33	0
42	D	11.33	0
43	D	11.33	0
44	D	11.33	0
45	D	11.33	0
46	E	9.33	0
47	E	9.33	0
48	E	12	0
49	E	12	0
50	E	12	0
51	E	12	0
52	E	12	0
53	F	12	0
54	F	10	0
55	F	10	0
56	F	12	0
57	F	12	0
58	G	23	0
59	G	23	0
60	н	23	0
61	н	23	0
62	н	23	0
63	н	23	0
64	н	23	0
65	н	23	0
66	н	23	0
67	н	23	0
68	н	23	0
69	н	23	0
70	н	23	0
71	н	23	0
72	J	23	0
73	J	23	0
74	к	23	0
75	к	23	0
76	к	23	0
77	к	23	0
78	L	11	0
79	М	23	0

NOTES:

SCALE:

1" = 40'

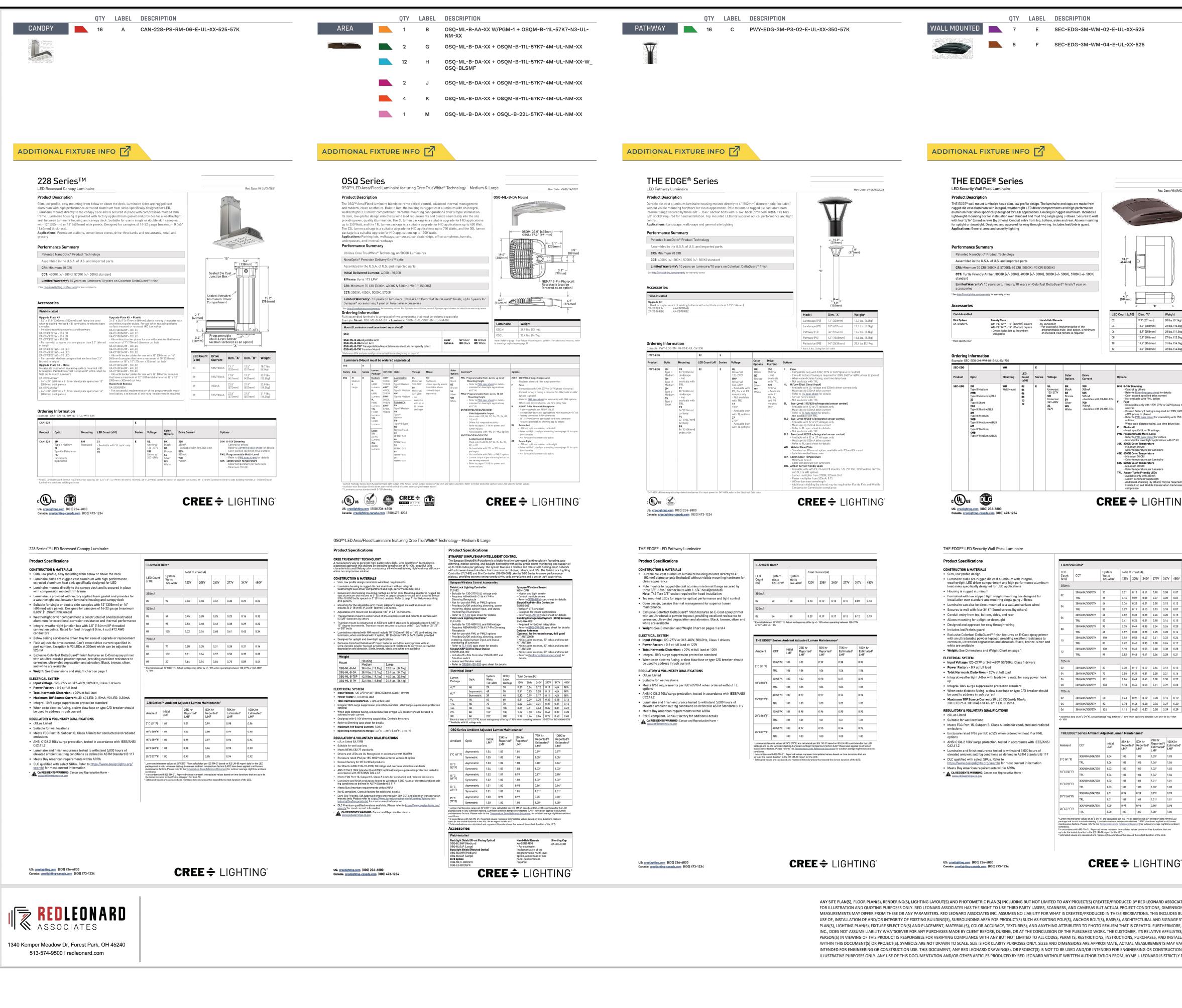
DWG SIZE:

D

- ALL AREA LIGHTS ON NEW 20 FT. POLE MOUNTED ON 3 FT. CONCRETE BASE

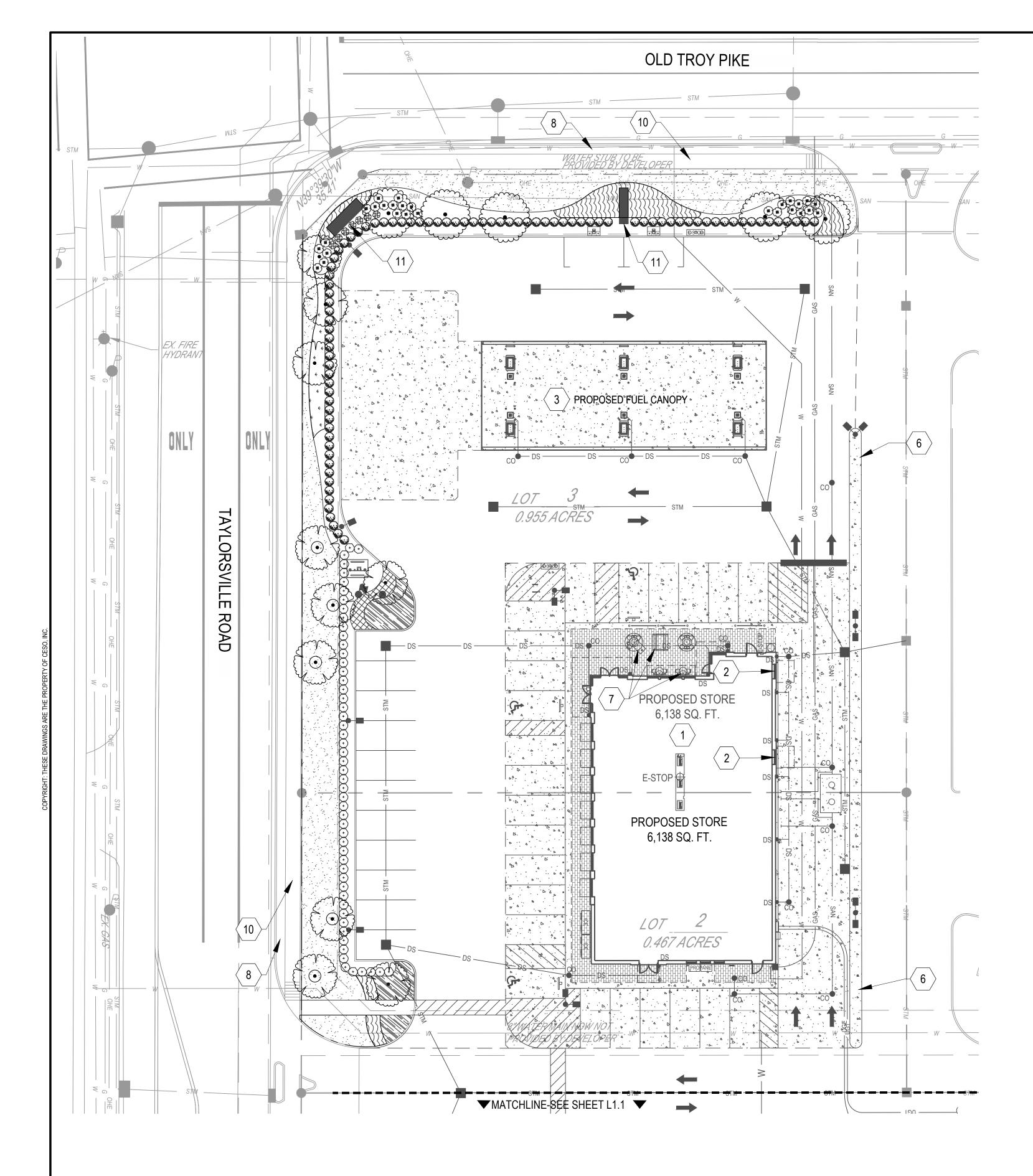
		nn

IDLE LEVELS CALCULATED AT G	RADE USING	INITIAL LUME	N VALUES		
	AVG	MAX	MIN	AVG/MIN	MAX/MIN
ED AREA	4.16	31.6	0.5	8.32	63.20
ED	0.47	19.2	0.0	N.A.	N.A.
ANOPY	36.27	51	15	2.42	3.40

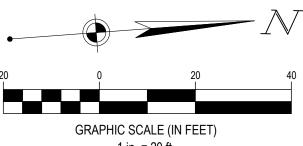

DATE: 4/5/22 HUBER HEIGHTS, OH DRAWING NUMBER: RL-7986-S1-R2

SHEET NO.

C7.0


W:\PROJECTS\SKILKEN GOLD\760396 SHEETZ - HUBER HEIGHTS, OH (TAYLORSVILLE RD)\03-CIVIL\PLAN\CONSTRUCTION\760396_C80-PHOTO.DWG - 8/16/2022 2:19 PM

are: V8 0703/2021 are: V8 0704 are: V8		DATE REVISION DESCRIPTION 04/29/2022 • MAJOR SITE PLAN - 1ST SUBMITTAL 06/03/2022 • MAJOR SITE PLAN - 2ND SUBMITTAL	JOSHUA LONG E-86142	C O M
12 0.10 21 0.16 20 0.22 37 0.28 15 0.12 27 0.20 39 0.29 r347-4807 1.01 1.02 1.04 1.05 1.06 1.02 1.04 1.07 1.08 1.09 1.01 0.79 1.01 0.79 1.01 0.79 1.01 0.79 1.01 0.79 1.01 0.79 1.01 0.79 1.01 0.79 1.01 0.79 1.01 0.79 1.01 0.79 1.01 0.79 1.01 0.79 1.01 0.79 1.01 0.79 1.71		SKILKEN GOLD REAL ESTATE DEVELOPMENT	SHEETZ	HUBER HEIGHTS, OHIO OLD TROY PIKE & TAYLORSVILLE ROAD
ASSOCIATES INC., ARE ONLY INTENDED MENSIONS, AND ACCURACY OF LUDES BUT IS NOT LIMITED TO THE GNAGE STRUCTURE(S), LANDSCAPING ERMORE, RED LEONARD ASSOCIATES FFILATES, AS WELL AS ANY OTHER D INSTALLATIONS OF OBJECTS VIEWED MAY VARY. DRAWINGS ARE NOT RUCTION PURPOSES, BUT FOR TRICTLY PROHIBITED.	<section-header></section-header>			TRIC S


C7.1

W:\PROJECTS\SKILKEN GOLD\760396 SHEETZ - HUBER HEIGHTS, OH (TAYLORSVILLE RD)\03-CIVIL\PLAN\CONSTRUCTION\760396_C80-PHOTO.DWG - 8/16/2022 2:19 F

FORTY-EIGHT (48) HOURS BEFORE DIGGING IS TO COMMENCE, THE CONTRACTORS SHALL NOTIFY THE FOLLOWING AGENCIES: OHIO UTILITIES PROTECTION SERVICE AT 811 OR 1 (800) 362-2764 AND ALL OTHER AGENCIES WHICH MIGHT HAVE UNDERGROUND UTILITIES INVOLVING THIS PROJECT AND ARE NONMEMBERS OF OHIO UTILITIES PROTECTION SERVICE

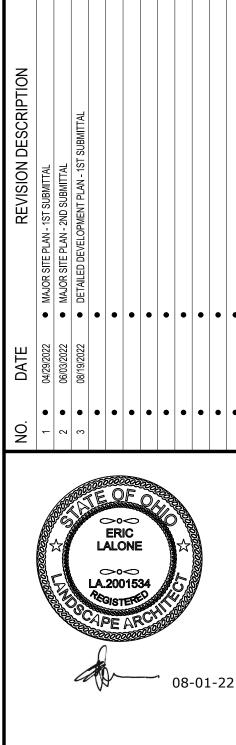
1 in. = 20 ft.

LEGEND PROPOSED BRICK PAVERS (REFER TO ARCHITECTURAL PLANS) PROPOSED REINFORCED . . . STANDARD-DUTY CONCRETE PAVEMENT BUILDING CONCRETE CURB EDGE OF PAVEMENT / WALK PAVEMENT TRANSITION _____ SIGN 6" BOLLARD **AIR MACHINE** UNDERGROUND FUEL TANK VENT PAD VACUUM GREASE TANK, REFER TO PLUMBING PLANS PROPANE LOCKERS ICE MERCHANDISER

CODED NOTES:

•-

ھ


1. PROPOSED 6,138 SF STORE. REFER TO ARCHITECTURAL PLANS.

SITE LIGHTING

- 2. PROPOSED DRIVE-THRU WINDOW.
- 3. PROPOSED SIX (6) DISPENSER FUEL CANOPY. REFER TO ARCHITECTURAL PLANS.
- 4. PROPOSED STORAGE AREA.
- 5. PROPOSED DUMPSTER ENCLOSURE AND PAD. SEE DETAIL ON SHEET C6.1.
- 6. CURBED MEDIAN.
- 7. PROPOSED PATIO SEATING. REFER TO ARCHITECTURAL PLANS.
- 8. EXISTING TURF TO REMAIN.
- 9. EXISTING LANDSCAPE TO REMAIN.
- 10. EXISTING SIDEWALK TO REMAIN.
- 11. PROPOSED MONUMENT SIGN.

PLANT SCHEDU	QTY	BOTANICAL / COMMON NAME	SIZE	MIN HT / SPR	SPACING
	5	ACER BUERGERIANUM TRIDENT MAPLE	2.5" CAL	10` HT / 5` SPR	AS SHOWN
·	1	ACER RUBRUM 'ARMSTRONG' ARMSTRONG RED MAPLE	1.5" CAL		AS SHOWN
	2	PICEA ABIES NORWAY SPRUCE		6` HT	AS SHOWN
·	2	PRUNUS SERRULATA 'FIRST BLUSH' FIRST BLUSH CHERRY	1.5" CAL	7` HT / 4` SPR	AS SHOWN
	11	THUJA OCCIDENTALIS 'SMARAGD' EMERALD GREEN ARBORVITAE		6` HT	4`-0" OC
	32	THUJA STANDISHII X PLICATA 'GREEN GIANT' GREEN GIANT ARBORVITAE		6` HT	10`-0" OC
	20	TILIA CORDATA 'CORZAM' CORZAM LITTLE LEAF LINDEN	2.5" CAL	10` HT / 5` SPR	AS SHOWN
SHRUBS	<u>QTY</u>	BOTANICAL / COMMON NAME	<u>SIZE</u>	MIN HT / SPR	<u>SPACING</u>
0	126	ABELIA X 'EDWARD GOUCHER' EDWARD GOUCHER ABELIA		24" HT	3`-0" OC
\odot	120	ILEX CRENATA JAPANESE HOLLY		24" HT	3`-0" OC
⊕	7	ILEX CRENATA 'PIIIC-I' TM STRAIGHT AND NARROW JAPANESE HOLLY		60" HT	2`-6" O.C.
Ō	28	JUNIPERUS X PFITZERIANA 'GOLD COAST' GOLD COAST PFITZER JUNIPER		24" HT	3`-0" OC
۲	55	PRUNUS LAUROCERASUS 'SCHIPKAENSIS' SCHIPKA ENGLISH LAUREL		24" HT	3`-0" OC
٢	73	RHODODENDRON X 'AUTUM BONFIRE' TM AUTUMN BONFIRE ENCORE AZALEA		24" HT	3`-0" OC
SHRUB AREAS	<u>QTY</u>	BOTANICAL / COMMON NAME	<u>SIZE</u>	MIN HT/ SPR	SPACING
* * , * * * *	128	MISCANTHUS SINENSIS 'MORNING LIGHT' MORNING LIGHT EULALIA GRASS		12" HT	2`-6" OC
	316	ROSA X 'MEISENTMIL' TM LEMON DRIFT GROUNDCOVER ROSE		12" HT / SPR	2`-0" OC
GROUND COVERS	QTY	BOTANICAL / COMMON NAME	<u>SIZE</u>	MIN HT / SPR	SPACING
	251	HYPERICUM CALYCINUM CREEPING ST. JOHN'S WORT	1 GAL	6" HT	1`-6" OC
	361	LIRIOPE MUSCARI 'SUPER BLUE' SUPER BLUE LILYTURF	1 GAL	1` HT / SPR	1`-6" OC
	27,428 SF	POA PRATENSIS KENTUCKY BLUEGRASS	SOD		

MULCH

 ALL PLANT BEDS SHALL CONTAIN A 3" LAYER OF DOUBLE HAMMERED HARDWOOD MULCH CONTRACTOR TO PLACE 4' DIAMETER MULCH RING AROUND ALL TREES IN LAWN

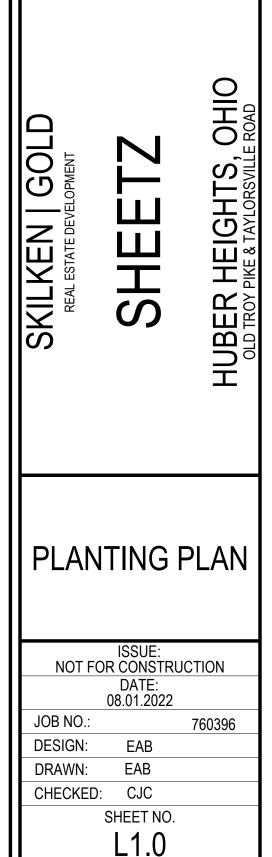
IRRIGATION

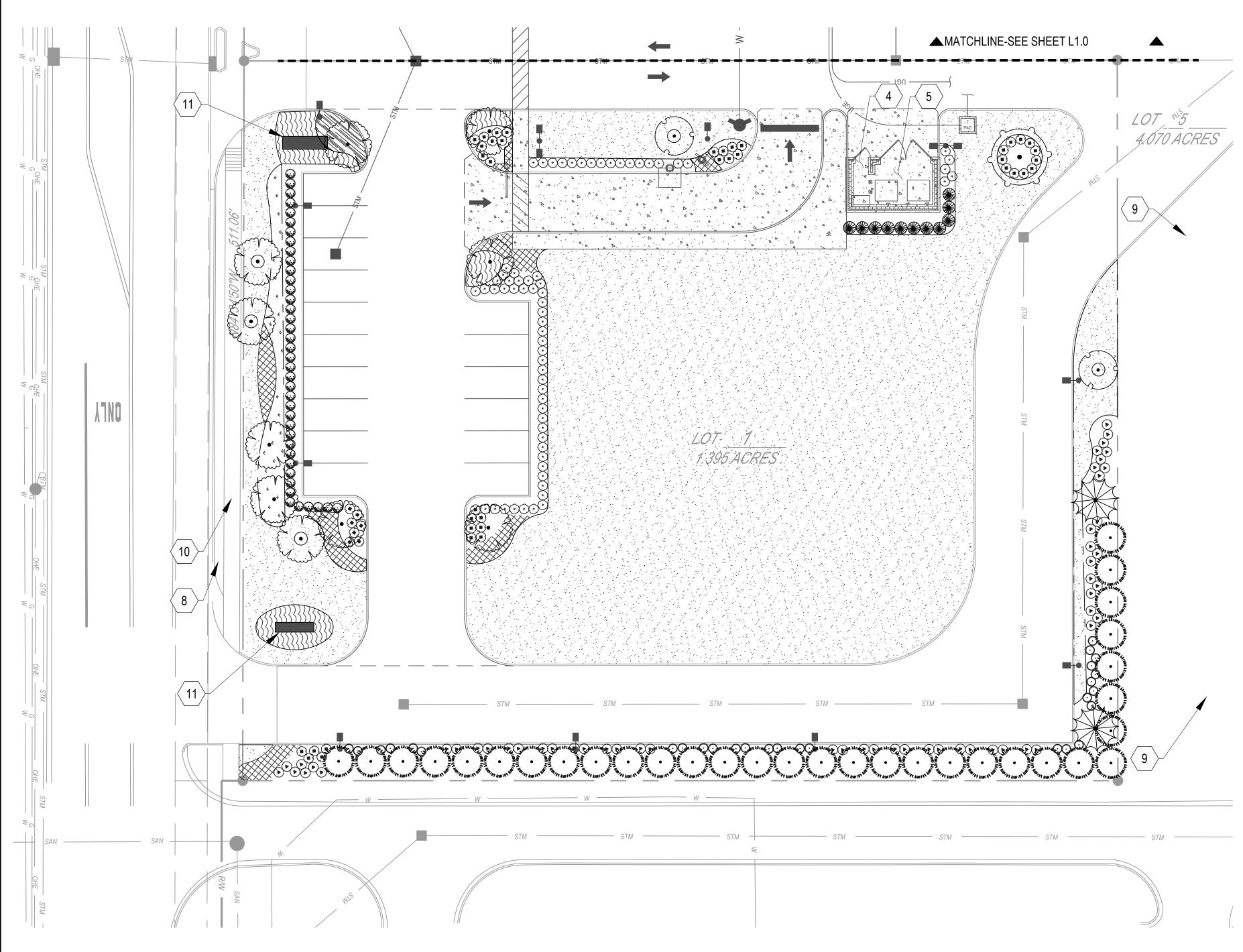
• THE CONTRACTOR SHALL DESIGN, SUPPLY, AND INSTALL IRRIGATION SYSTEM FOR ALL SODDED AND PLANTING AREAS AS SHOWN ON THIS SHEET. DESIGN SHALL BE APPROVED BY OWNER'S REPRESENTATIVE PRIOR TO INSTALLATION

LANDSCAPE REQUIREMENTS

PARKING BUFFERS ALONG PUBLIC RIGHTS-OF WAY OLD TROY PIKE (175 LF, NOT INCL DRIVES) REQUIRED WIDTH: 10' PROPOSED WIDTH: 20.4'

REQUIRED CANOPY TREES (1 PER 35'): 5 PROPOSED CANOPY TREES: 5 REQUIRED SHRUBS (10 PER 35'): 50 PROPOSED SHRUBS: 73 (NOT INCL ORNAMENTAL GRASSES)

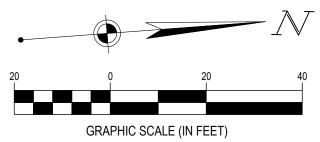

PARKING LOT INTERIOR REQUIREMENTS REQUIRED PERCENTAGE PERVIOUS AREA: 4% PROPOSED PERCENTAGE PERVIOUS AREA: 32%


TERMINAL ISLAND PLANTING REQUIRED COVERING OTHER THAN SOD: 75% PROPOSED COVERING OTHER THAN SOD: 100%

SIDE YARD SCREENING REQUIRED MINIMUM HEIGHT: 6' PROPOSED MINIMUM HEIGHT: 6'

TAYLORSVILLE ROAD (440 LF, NOT INCL DRIVES) REQUIRED WIDTH: 10 PROPOSED WIDTH: 12.5' TO 18' REQUIRED CANOPY TREES (1 PER 35'): 13 PROPOSED CANOPY TREES: 13 REQUIRED SHRUBS (10 PER 35'): 126 PROPOSED SHRUBS: 128 (NOT INCL ORNAMENTAL GRASSES)

W:\PROJECTS\SKILKEN GOLD\760396 SHEETZ - HUBER HEIGHTS, OH (TAYLORSVILLE RD)\06-LA_PLAN_CD\PLANS\760396-02 L1.0 PLANT PLAN.DWG - 8/16/2022 2:20 PM



\rightarrow CODED NOTES:

1. PROPOSED 6,138 SF STORE. REFER TO ARCHITECTURAL

- 2. PROPOSED DRIVE-THRU WINDOW.
- 3. PROPOSED SIX (6) DISPENSER FUEL CANOPY. REFER TO
- 4. PROPOSED STORAGE AREA
- 5. PROPOSED DUMPSTER ENCLOSURE AND PAD. SEE DETA
- 6. CURBED MEDIAN.
- 7. PROPOSED PATIO SEATING. REFER TO ARCHITECTURAL
- 8. EXISTING TURF TO REMAIN.
- 9. EXISTING LANDSCAPE TO REMAIN.
- 10. EXISTING SIDEWALK TO REMAIN.
- 11. PROPOSED MONUMENT SIGN.

1 in. = 20 ft.

Ohio Utilities Protection Service

before you dig

FORTY-EIGHT (48) HOURS BEFORE DIGGING IS TO COMMENCE, THE CONTRACTORS SHALL NOTIFY THE FOLLOWING AGENCIES: OHIO UTILITIES PROTECTION SERVICE AT 811 OR 1 (800) 362-2764 AND ALL OTHER AGENCIES WHICH MIGHT HAVE UNDERGROUND UTILITIES INVOLVING THIS PROJECT AND ARE NONMEMBERS OF OHIO UTILITIES PROTECTION SERVICE

		LEGEND
AL PLANS.		PROPOSED BRICK PAVERS (REFER TO ARCHITECTURAL PLANS)
TO ARCHITECTURAL PLANS.		PROPOSED REINFORCED STANDARD-DUTY CONCRETE PAVEMENT
ETAIL ON SHEET C6.1.		BUILDING CONCRETE CURB EDGE OF PAVEMENT / WALK PAVEMENT TRANSITION
AL PLANS.	<u>~</u>	SIGN
	٥	6" BOLLARD
		AIR MACHINE
	Ξ	UNDERGROUND FUEL TANK VENT PAD
		VACUUM
	۵	GREASE TANK, REFER TO PLUMBING PLANS
	PECIME	PROPANE LOCKERS
	125 125	ICE MERCHANDISER
	•=	SITE LIGHTING

PLANT SCHEDU	LE				
TREES	<u>QTY</u>	BOTANICAL / COMMON NAME	SIZE	MIN HT / SPR	SPACING
	5	ACER BUERGERIANUM TRIDENT MAPLE	2.5" CAL	10` HT / 5` SPR	AS SHOWN
	1	ACER RUBRUM 'ARMSTRONG' ARMSTRONG RED MAPLE	1.5" CAL		AS SHOWN
	2	PICEA ABIES NORWAY SPRUCE		6` HT	AS SHOWN
	2	PRUNUS SERRULATA 'FIRST BLUSH' FIRST BLUSH CHERRY	1.5" CAL	7` HT / 4` SPR	AS SHOWN
	11	THUJA OCCIDENTALIS 'SMARAGD' EMERALD GREEN ARBORVITAE		6` HT	4`-0" OC
	32	THUJA STANDISHII X PLICATA 'GREEN GIANT' GREEN GIANT ARBORVITAE		6` HT	10`-0" OC
	20	TILIA CORDATA 'CORZAM' CORZAM LITTLE LEAF LINDEN	2.5" CAL	10` HT / 5` SPR	AS SHOWN
<u>SHRUBS</u>	<u>QTY</u>	BOTANICAL / COMMON NAME	<u>SIZE</u>	MIN HT / SPR	SPACING
٥	126	ABELIA X 'EDWARD GOUCHER' EDWARD GOUCHER ABELIA		24" HT	3`-0" OC
\odot	120	ILEX CRENATA JAPANESE HOLLY		24" HT	3`-0" OC
#	7	ILEX CRENATA 'PIIIC-I' TM STRAIGHT AND NARROW JAPANESE HOLLY		60" HT	2`-6" O.C.
Ο	28	JUNIPERUS X PFITZERIANA 'GOLD COAST' GOLD COAST PFITZER JUNIPER		24" HT	3`-0" OC
۲	55	PRUNUS LAUROCERASUS 'SCHIPKAENSIS' SCHIPKA ENGLISH LAUREL		24" HT	3`-0" OC
۲	73	RHODODENDRON X 'AUTUM BONFIRE' TM AUTUMN BONFIRE ENCORE AZALEA		24" HT	3`-0" OC
SHRUB AREAS	<u>QTY</u>	BOTANICAL / COMMON NAME	<u>SIZE</u>	MIN HT/ SPR	SPACING
 	128	MISCANTHUS SINENSIS 'MORNING LIGHT' MORNING LIGHT EULALIA GRASS		12" HT	2`-6" OC
	316	ROSA X 'MEISENTMIL' TM LEMON DRIFT GROUNDCOVER ROSE		12" HT / SPR	2`-0" OC
GROUND COVERS	<u>QTY</u>	BOTANICAL / COMMON NAME	SIZE	MIN HT / SPR	SPACING
	251	HYPERICUM CALYCINUM CREEPING ST. JOHN'S WORT	1 GAL	6" HT	1`-6" OC
	361	LIRIOPE MUSCARI 'SUPER BLUE' SUPER BLUE LILYTURF	1 GAL	1` HT / SPR	1`-6" OC
	27,428 SF	POA PRATENSIS KENTUCKY BLUEGRASS	SOD		

MULCH

 ALL PLANT BEDS SHALL CONTAIN A 3" LAYER OF DOUBLE HAMMERED HARDWOOD MULCH CONTRACTOR TO PLACE 4' DIAMETER MULCH RING AROUND ALL TREES IN LAWN

IRRIGATION

• THE CONTRACTOR SHALL DESIGN, SUPPLY, AND INSTALL IRRIGATION SYSTEM FOR ALL SODDED AND PLANTING AREAS AS SHOWN ON THIS SHEET. DESIGN SHALL BE APPROVED BY OWNER'S REPRESENTATIVE PRIOR TO INSTALLATION

LANDSCAPE REQUIREMENTS

PARKING BUFFERS ALONG PUBLIC RIGHTS-OF WAY OLD TROY PIKE (175 LF, NOT INCL DRIVES) REQUIRED WIDTH: 10' PROPOSED WIDTH: 20.4' REQUIRED CANOPY TREES (1 PER 35'): 5

- PROPOSED CANOPY TREES: 5 REQUIRED SHRUBS (10 PER 35'): 50
- PROPOSED SHRUBS: 73 (NOT INCL ORNAMENTAL GRASSES)

PARKING LOT INTERIOR REQUIREMENTS REQUIRED PERCENTAGE PERVIOUS AREA: 4%

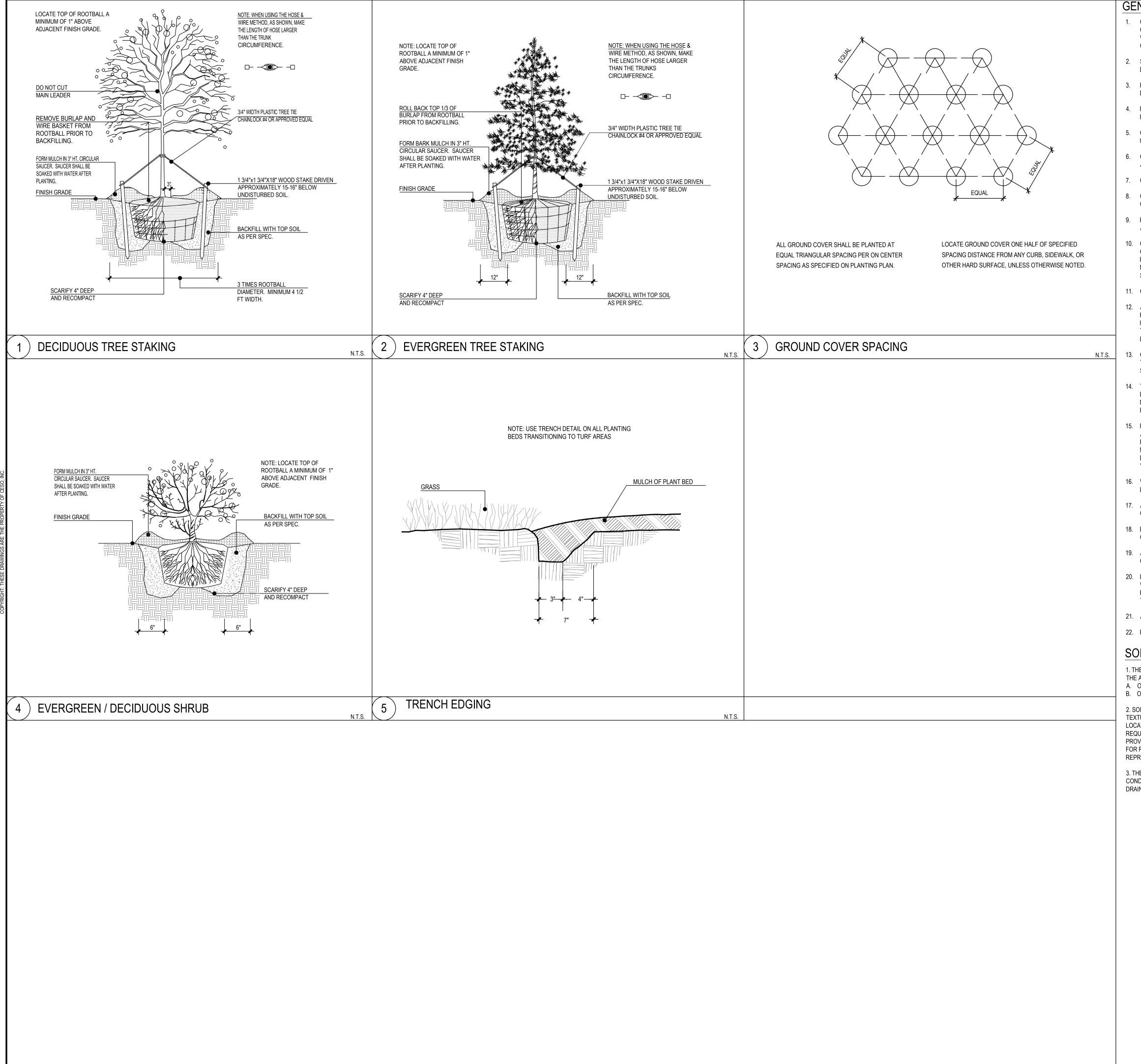
PROPOSED PERCENTAGE PERVIOUS AREA: 32%

TERMINAL ISLAND PLANTING REQUIRED COVERING OTHER THAN SOD: 75% PROPOSED COVERING OTHER THAN SOD: 100%

SIDE YARD SCREENING REQUIRED MINIMUM HEIGHT: 6' PROPOSED MINIMUM HEIGHT: 6' TAYLORSVILLE ROAD (440 LF, NOT INCL DRIVES)

REQUIRED WIDTH: 10' PROPOSED WIDTH: 12.5' TO 18' REQUIRED CANOPY TREES (1 PER 35'): 13

PROPOSED CANOPY TREES: 13


REQUIRED SHRUBS (10 PER 35'): 126 PROPOSED SHRUBS: 128 (NOT INCL ORNAMENTAL GRASSES)

W:\PROJECTS\SKILKEN GOLD\760396 SHEETZ - HUBER HEIGHTS, OH (TAYLORSVILLE RD)\06-LA_PLAN_CD\PLANS\760396-02 L1.0 PLANT PLAN.DWG - 8/16/2022 2:20 PM

SHEET NO.

L1.1

GENERAL NOTES: LANDSCAPE PLAN

CONTRACTOR TO VERIFY WITH OWNER AND UTILITY COMPANIES THE LOCATIONS OF ALL UTILITIES PRIOR TO CONSTRUCTION, TO DETERMINE IN THE FIELD THE ACTUAL LOCATIONS AND ELEVATIONS OF ALL EXISTING UTILITIES, WHETHER SHOWN ON THE PLANS OR NOT. THE CONTRACTOR SHALL CALL UTILITY LOCATE SERVICE 72 HOURS PRIOR TO CONSTRUCTION.

SITE CONDITIONS BASED UPON SURVEY PROVIDED BY OWNER. CONTRACTOR TO FIELD VERIFY EXISTING CONDITIONS BY DETAILED INSPECTION PRIOR TO SUBMITTING BID AND BEGINNING CONSTRUCTION.

REFER TO SITE CIVIL DRAWINGS FOR ADDITIONAL REQUIREMENTS AND COORDINATE WORK WITH OTHER SITE RELATED DEVELOPMENT DRAWING AS NEEDED.

REESTABLISH EXISTING TURF IN AREAS DISTURBED BY GRADING OR UTILITY TRENCHING, INCLUDING AREAS IN RIGHT-OF-WAY, TO MATCH EXISTING SPECIES.

5. CONTRACTOR SHALL EXAMINE FINISH SURFACE, GRADES, TOPSOIL QUALITY AND DEPTH. DO NOT START ANY WORK UNTIL UNSATISFACTORY CONDITIONS HAVE BEEN CORRECTED. VERIFY LIMITS OF WORK BEFORE STARTING.

6. CONTRACTOR TO REPORT ALL DAMAGES TO EXISTING CONDITIONS AND INCONSISTENCIES WITH PLANS TO LANDSCAPE ARCHITECT.

7. CONTRACTOR SHALL MAINTAIN POSITIVE DRAINAGE IN ALL LANDSCAPE BEDS AND ALL LAWN AREAS.

8. CONTRACTOR TO FINE GRADE AND ROCK-HOUND ALL TURF AREAS PRIOR TO SEEDING, TO PROVIDE A SMOOTH AND CONTINUAL SURFACE, FREE OF IRREGULARITIES (BUMPS OR DEPRESSIONS) & EXTRANEOUS MATERIAL OR DEBRIS.

9. REMOVE EXISTING WEEDS FROM PROJECT SITE PRIOR TO THE ADDITION OF ORGANIC AMENDMENTS AND FERTILIZER. APPLY AMENDMENTS AND FERTILIZER AS NEEDED.

10. QUANTITIES SHOWN ARE INTENDED TO ASSIST CONTRACTOR IN EVALUATING THEIR OWN TAKE OFFS AND ARE NOT GUARANTEED AS ACCURATE REPRESENTATIONS OF REQUIRED MATERIALS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR HIS BID QUANTITIES AS REQUIRED BY THE PLANS AND SPECIFICATIONS. IF THERE IS A DISCREPANCY BETWEEN THE NUMBER LABELED ON THE PLANT LEGEND AND THE QUANTITY OF GRAPHIC SYMBOLS SHOWN, THE GREATER QUANTITY SHALL GOVERN.

11. COORDINATE LANDSCAPE INSTALLATION WITH INSTALLATION OF UNDERGROUND SPRINKLER AND DRAINAGE SYSTEMS.

12. ALL SIZES AND QUALITY OF PLANT MATERIAL SHALL MEET THE MINIMUM SPECIFICATIONS OF THE AMERICAN STANDARD FOR NURSERY STOCK (ANSI Z60.1-2014). THE LANDSCAPE CONTRACTOR SHALL INSTALL ALL PLANT MATERIAL IN SIZE AS INDICATED IN THE PLANT SCHEDULE UNLESS OTHERWISE SPECIFIED ON THE PLAN SET. ALL PLANTS THAT DO NOT MEET THE SIZE AND SPECIFICATIONS SET FORTH BY THE AMERICAN STANDARD FOR NURSERY STOCK WILL BE REJECTED BY LANDSCAPE ARCHITECT AT NO COST TO OWNER.

13. ONCE PROJECT IS AWARDED, THE LANDSCAPE CONTRACTOR SHALL BE RESPONSIBLE TO SECURE ALL PLANT MATERIAL IN THE SIZE SPECIFIED ON PLAN PRIOR TO INSTALLATION. IN THE EVENT THE PLANT MATERIAL IS NOT AVAILABLE IN THE SIZE SPECIFIED, THE CONTRACTOR SHALL INSTALL LARGER AT NO COST TO OWNER.

14. THE LANDSCAPE CONTRACTOR SHALL OBTAIN WRITTEN APPROVAL FOR ALL PLANT MATERIAL SUBSTITUTIONS FROM THE LANDSCAPE ARCHITECT PRIOR TO INSTALLATION. PLANT SUBSTITUTIONS WITHOUT PRIOR WRITTEN APPROVAL THAT DO NOT COMPLY WITH THE DRAWINGS AND SPECIFICATIONS MAY BE REJECTED BY THE LANDSCAPE ARCHITECT AND REPLACED BY CONTRACTOR AT NO COST TO THE OWNER.

15. PRIOR TO MOBILIZATION THE CONTRACTOR SHALL NOTIFY THE LANDSCAPE ARCHITECT, IN WRITING, IF HE/SHE BELIEVES ANY OF THE PLANT MATERIAL IDENTIFIED ON THE PLAN MAY NOT BE SUITABLE FOR THE SITE OR MAY DIE. SUBSTITUTION REQUESTS WILL BE GRANTED BY THE LANDSCAPE ARCHITECT PRIOR TO THE START OF CONSTRUCTION ACTIVITIES. IF NOTIFICATION IS NOT GIVEN TO THE LANDSCAPE ARCHITECT ALL PLANTING WHICH FAILS TO GROW (EXCEPT FOR DEFECTS RESULTING FROM LACK OF ADEQUATE MAINTENANCE AS DETERMINED BY THE OWNER, NEGLECT, OR VANDALISM) SHALL BE REPLACED BY THE CONTRACTOR AT THE CONTRACTOR'S EXPENSE.

16. WHERE PROPOSED TREE LOCATIONS OCCUR UNDER EXISTING OVERHEAD UTILITIES OR CROWD EXISTING TREES, NOTIFY LANDSCAPE ARCHITECT TO ADJUST TREE LOCATIONS.

17. ALL PLANT MASSES TO BE TOP DRESSED WITH MULCH AS SPECIFIED IN PLANT SCHEDULE, SPREAD UNIFORMLY IN DEPTH OVER THE PLANTING BEDS AS DELINEATED ON THE PLANS UNLESS OTHERWISE NOTED.

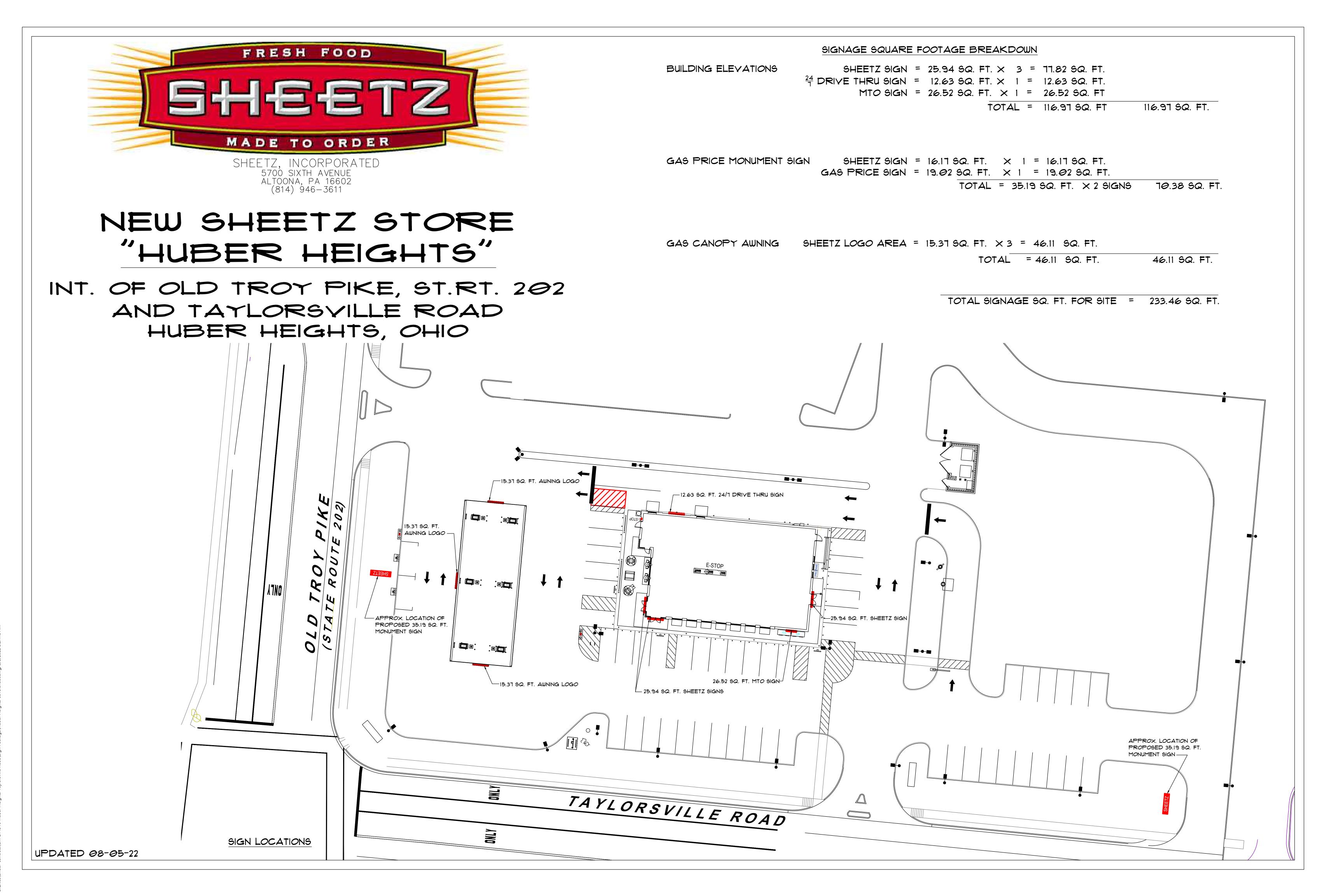
18. BED EDGE TO BE NO LESS THAN 12" AND NO MORE THAN 18" FROM OUTER EDGE OF PLANT MATERIAL BRANCHING. WHERE GROUND-COVER OCCURS, PLANT TO LIMITS OF AREA AS SHOWN.

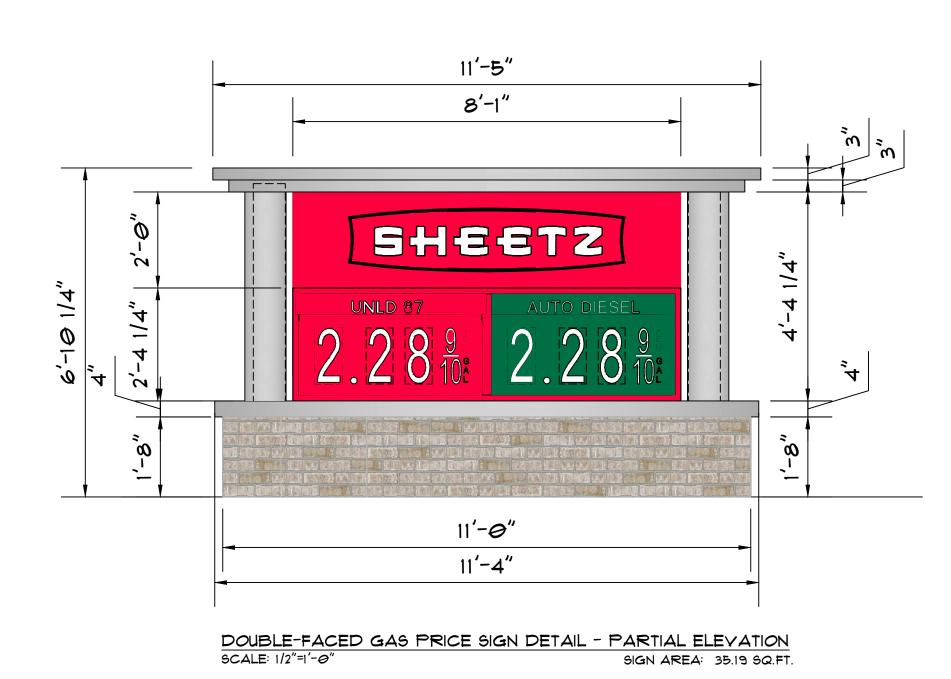
19. ALL PLANTS SHALL BE GUARANTEED FOR 1 YEAR AFTER SUBSTANTIAL COMPLETION OCCURS AND FINAL ACCEPTANCE BY OWNER.

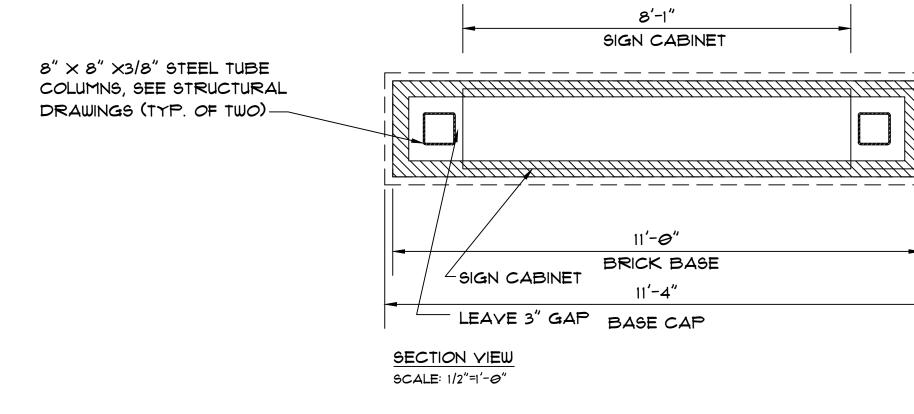
20. LANDSCAPE MAINTENANCE PERIOD BEGINS IMMEDIATELY AFTER THE COMPLETION OF ALL PLANTING OPERATIONS AND WRITTEN ACCEPTANCE FROM THE OWNER AND LANDSCAPE ARCHITECT. MAINTAIN TREES, SHRUBS, LAWNS, AND OTHER PLANTS AS PER THE PROJECT MANUAL AND/OR WRITTEN SPECIFICATIONS, IF APPLICABLE. LANDSCAPE MAINTENANCE IS THE LANDSCAPING CONTRACTORS RESPONSIBILITY UNTIL FINAL ACCEPTANCE BY THE OWNER.

21. ALL LANDSCAPE MAINTENANCE SHALL BE IN ACCORDANCE WITH LOCAL GOVERNING STANDARDS.

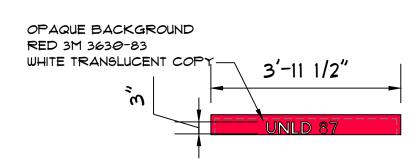
22. REFER TO PROJECT MANUAL OR WRITTEN SPECIFICATIONS, IF AVAILABLE, FOR ADDITIONAL REQUIREMENTS.

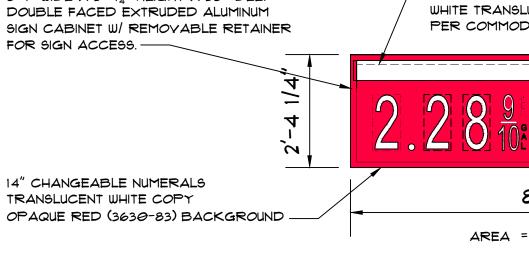

SOIL PLANTING MIXTURE (MIX ONSITE)


 THE LANDSCAPE CONTRACTOR SHALL FURNISH FROM THEIR SOURCE A GOOD CLEAN, NATIVE SOIL WHICH SHALL MEET THE APPROVAL OF THE OWNER'S REPRESENTATIVE. THIS SOIL SHALL BE USED FOR THE PLANTING MIXTURE AS FOLLOWS:
 A. ONE PART COMPOST/MANURE PLANTING MIX, TOPSOIL OR APPROVED EQUAL
 B. ONE PART NATIVE SOIL

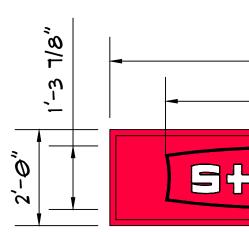

2. SOILS WITHIN PLANTING AREAS MUST BE SUITABLE FOR PROPOSED PLANTED MATERIAL & SOD WITH REGARD TO: pH, SOIL TEXTURE, SOIL STRUCTURE, AND SEASONAL HIGH WATER TABLE. THE CONTRACTOR SHALL ANALYZE EXISTING SOILS LOCATED IN PROXIMITY TO PROPOSED PLANT MATERIAL AND BE RESPONSIBLE TO AMEND THE SOIL TO OBTAIN ESSENTIAL REQUIREMENTS NECESSARY FOR THE ESTABLISHMENT AND GROWTH OF PLANT LIFE. LANDSCAPE CONTRACTOR TO PROVIDE SOILS REPORT AND APPROPRIATE RECOMMENDATIONS PRIOR TO INSTALLATION TO OWNER'S REPRESENTATIVE FOR REVIEW. FAILURE TO PROVIDE REPORT MAY RESULT IN PLANT MATERIAL BEING REJECTED BY OWNER'S REPRESENTATIVE AND REPLACED AT NO COST TO OWNER.

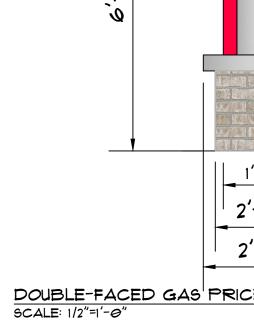
3. THE LANDSCAPE CONTRACTOR SHALL NOTIFY THE OWNER'S REPRESENTATIVE IN WRITING PRIOR TO PLANTING, WHEN CONDITIONS DETRIMENTAL TO PLANT GROWTH ARE ENCOUNTERED, SUCH AS RUBBLE FILL, POOR PLANTING SOIL, ADVERSE DRAINAGE CONDITIONS, OR OBSTRUCTIONS.

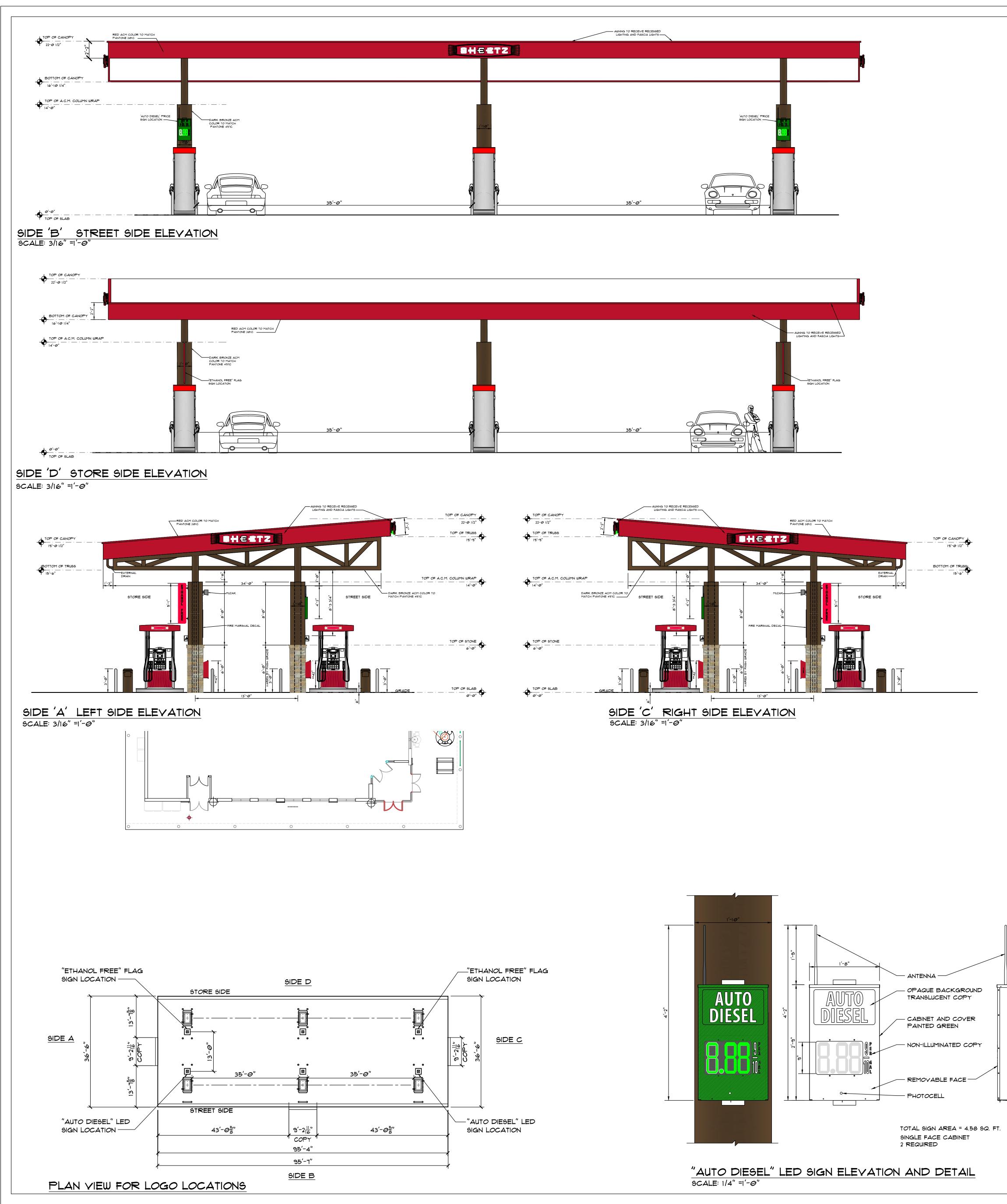

				E								
NO. DATE REVISION DESCRIPTION	1 • 04/29/2022 • MAJOR SITE PLAN - 15T SUBMITTAL	2 • 0603/2022 • MAJOR SITE PLAN - 2ND SUBMITTAL	3 • 08/19/2022 • DETAILED DEVELOPMENT PLAN - 1ST SUBMITTAL					•	•	•	•	•
	ERC LALONE De ARCUMO De ARCUMO De Otto De Otto							2				
SKII KFN I GOLD	SKILKEN GOLD REAL ESTATE DEVELOPMENT BABEBTZ BABEBTZ HUBER HEIGHTS, OHIO OLD TROY PIKE & TAYLORSVILLE ROAD							OLD TROY PIKE & TAYLORSVILLE ROAD				
JC DE DF	PLANT DETAILS & NOT FOR CONSTRUCTION DATE: 08.01.2022 JOB NO.: 760396 DESIGN: EAB DRAWN: EAB CHECKED: CJC SHEET NO. L2.0											

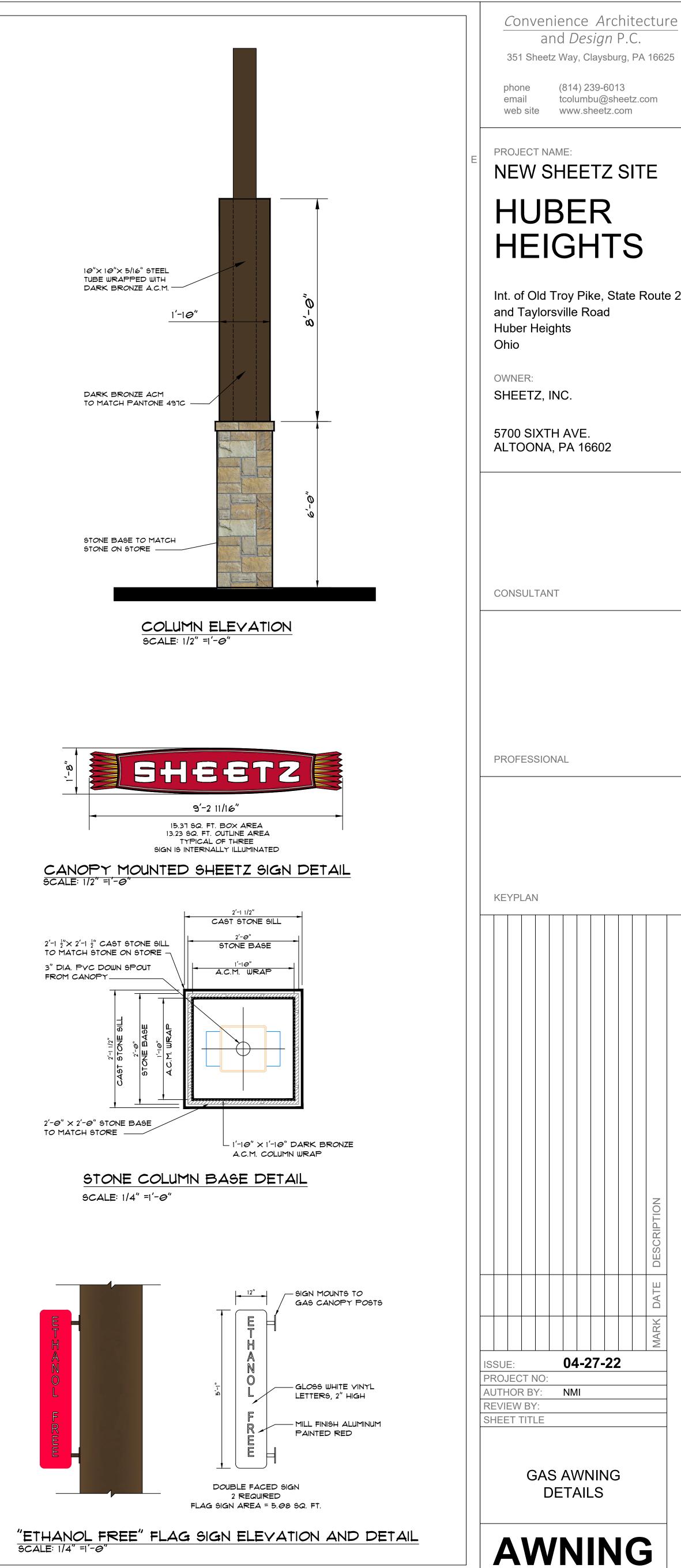


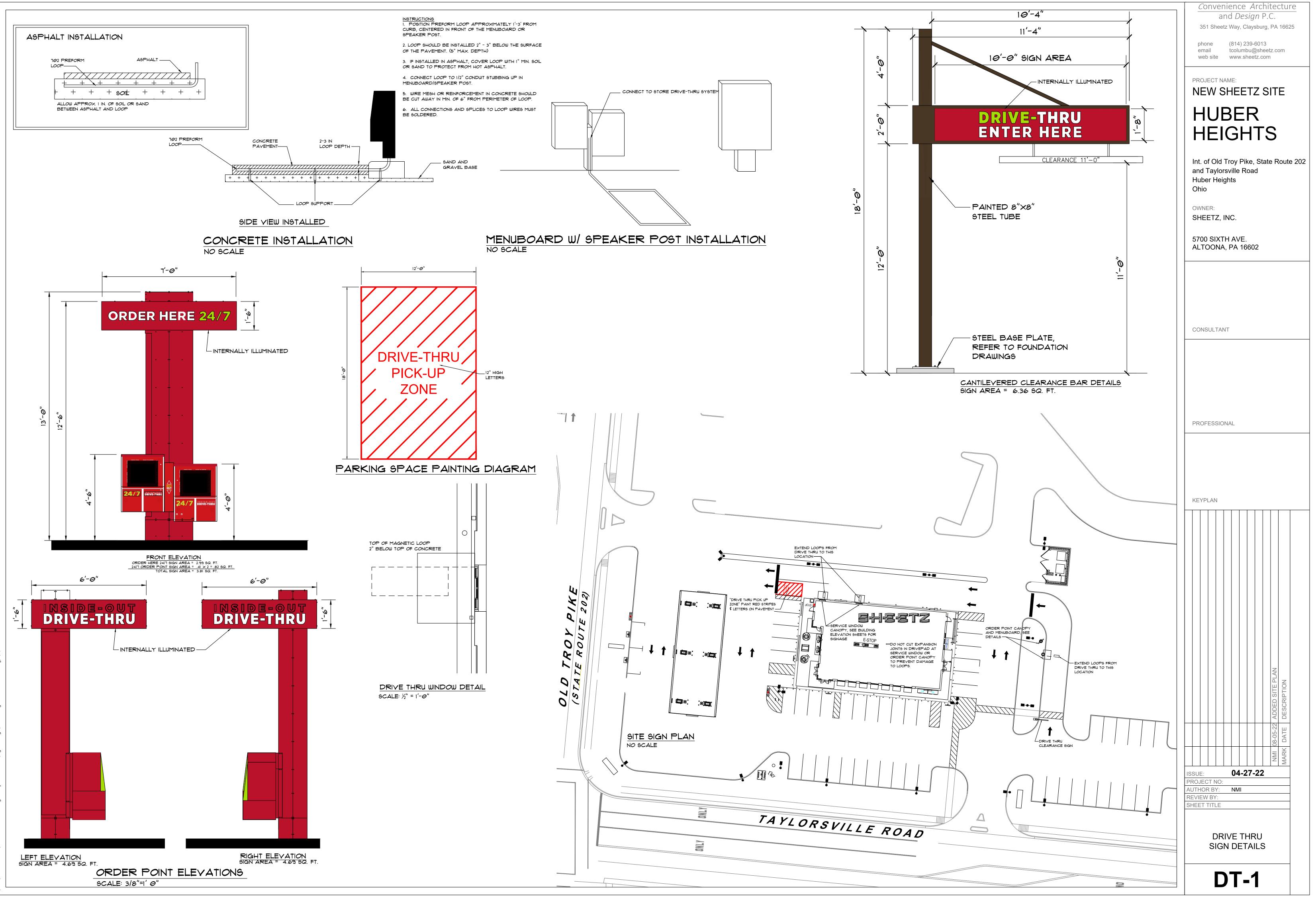
TYPICAL OF TWO SIGNS

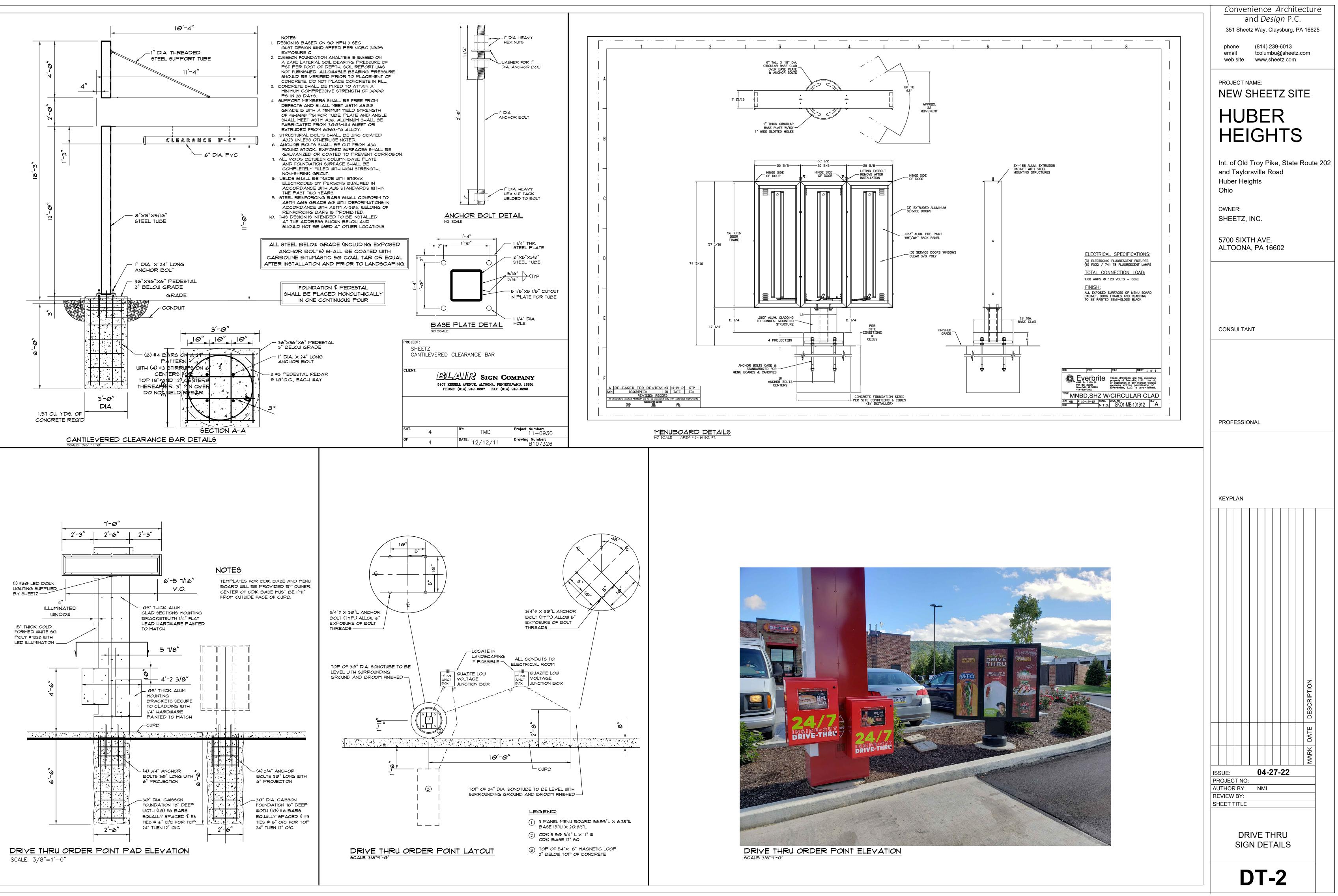



"UNLD 87" TO BE ON STREET SIDE OF SIGN FOR BOTH SIDES

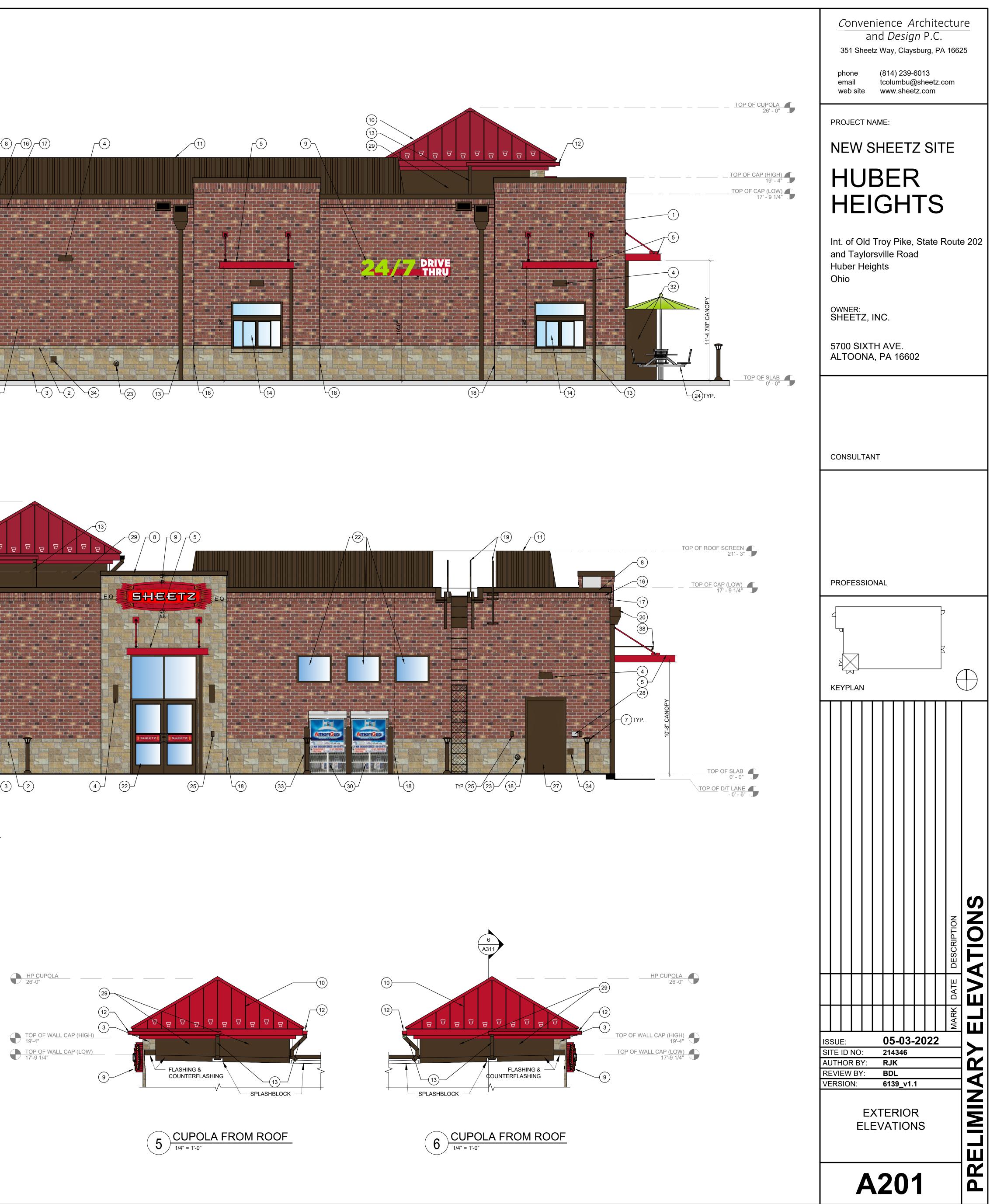

8'-1" WIDE \times 2'-4 $\frac{1}{4}$ " HEIGHT \times 20" DEEP DOUBLE FACED EXTRUDED ALUMINUM SIGN CABINET W/ REMOVABLE RETAINER




$2^{2}-4^{\prime\prime}$ $1^{\prime}-1 1/4^{\prime\prime}$ $2^{\prime}-\theta^{\prime\prime}$	Convenience Architecture and Design P.C. 351 Sheetz Way, Claysburg, PA 16625 phone (814) 239-6013 email toolumbu@sheetz.com Web site www.sheetz.com PROJECT NAME: NEW SHEETZ SITE HUBERAGANATIONS Int. of Old Troy Pike, State Route 202 and Taylorsville Road Huber Heights Ohio OWNER: SHEETZ, INC. 5700 SIXTH AVE. ALTOONA, PA 16602
ED GAS PRICE SIGN DETAIL - SIDE VIEW	CONSULTANT
8'-1"	PROFESSIONAL
5'-9 3/16"	KEYPLAN
SHEATZ SIGN AREA = 16.11 SQ.FT. PANEL HAS OPAQUE (NON-LIT) BACKGROUND	
- OPAQUE BACKGROUND WHITE TRANSLUCENT COPY DECORATED PER COMMODITY PANEL 24VDC LED BACKLIGHTING <u>ELECTRICAL REQUIREMENTS</u> : SWITCHED SIGN CIRCUIT: 120VAC 50/60 HZ, 2 AMPS NON-SWITCHED CONTROL CABINET CIRCUIT: 120 VAC 50/60 HZ, 2 AMP 2000 101 101 101 101 101 101 10	ADDED "TYPICAL OF TWO SIGNS" DESCRIPTION
8'-1" OPAQUE GREEN (3630-26) BACKGROUND	ADDED "TYPIC
AREA = 19.02 SQ. FT.	08-05-22 DATE
OPAQUE BACKGROUND GREEN 3M 3630-26 WHITE TRANSLUCENT COPT 3'-11 1/2" Mutto DIESEL	ISSUE: 05-24-22 PROJECT NO: AUTHOR BY: NMI REVIEW BY: SHEET TITLE
	MONUMENT SIGN DETAILS
	SIGN



	(814) 239 tcolumbuo www.shee	@sheetz	z.com				
JECT NA	^{ME:} HEET	Z SI	TE				
	BEF GH						
of Old T	roy Pike	, State		e 202			
Taylors er Heig o	sville Roa hts	ad					
ER: Etz, II	NC.						
) SIXTH OONA,	H AVE. PA 166	02					
SULTAN	Т						
FESSION	IAL						
PLAN							
			N				
			DESCRIPTION				
			MARK DATE D				
	04-27	-22	MARh				
CT NO: R BY: V BY: TITLE	NMI						
GAS	GAS AWNING						
	DETAILS						
W	NI		G				


and Design P.C.

21 20 TOP OF ROOF SCREEN <u>TOP OF CAP (HIGH</u> 19' - 4" TOP OF CAP (LOW) 17' - 9 1/4" 5 4 30-TOP OF SLAB 26 TYP. 33-/ 3 REAR ELEVATION TYPICAL EXTERIOR ELEVATION NOTES: ALL LIGHTS SHOWN ABOVE AND/OR BELOW DOORS OR WINDOWS ARE TO BE CENTERED ON THE DOOR OR WINDOW UNLESS NOTED OTHERWISE. FIXTURES/EQUIPMENT BETWEEN TWO DOORS OR WINDOWS ARE TO BE CENTERED EQUALLY. EXTERIOR SEALANT FOR STONE SHALL COMPLY WITH SECTION 07 9005 JOINT SEALANTS, GENERAL BUILDING FASCADE WEATHER SEALANT AND SHALL MATCH THE COLOR OF THE STORE. EXTERIOR ELEVATION KEYNOTES: (1) BRICK VENEER (0/S 680 MOD BY CONTINENTAL BRICK CO.) 2 CAST STONE SILL (COLOR = CRAB ORCHARD) (3) ANCHORED CAST STONE MASONRY VENEER (COLOR = CRAB ORCHARD) 4 EXTERIOR LIGHT FIXTURE, SEE ELEC DWGS 5 ARCHITECTURAL CANOPY (COLOR = REGAL RED, PREMIUM TWO-COAT KYNAR FINISH) 6 BRICK PAVER WALKWAY 7 LIGHTED BOLLARD (8) METAL COPING (COLOR = DARK BRONZE) (9) WALL MOUNTED BUILDING SIGN (10) STANDING SEAM METAL ROOF (COLOR = BRITE RED)(11) ROOF EQUIPMENT SCREEN (COLOR = DARK BRONZE) TOP OF SLAB 0' - 0" (12) GUTTER (COLOR = RED) (13) DOWNSPOUT (COLOR = DARK BRONZE) (14) DRIVE-THRU WINDOW (IF APPLICABLE) (15) METAL STANDING SEAM SHED STYLE AWNING AND FRAME ASSEMBLY (ROOF COLOR = BRITE RED, FRAME COLOR = DARK BRONZE) (16) BRICK SOLDIER COURSE (0/S 680 MOD BY CONTINENTAL BRICK CO.) (17) BRICK ROWLOCK COURSE (0/S 680 MOD BY CONTINENTAL BRICK CO.) (18) CONTROL JOINT SEE MASONRY SPECS FOR COLOR (19) STEEL ROOF LADDER AND CRANKY POST (COLOR = DARK BRONZE) 20 STANDARD THROUGH WALL SCUPPER W/ CONDUCTOR HEAD & DOWNSPOUT (COLOR = DARK BRONZE) (21) OVERFLOW SCUPPER (22) ALUMINUM STOREFRONT SYSTEM (23) EXTERIOR HOSE BIB (24) OUTDOOR FURNITURE (25) ELECTRICAL RECEPTACLE (REFER TO ELECTRICAL DRAWINGS) (26) ELECTRICAL EQUIPMENT (REFER TO ELECTRICAL DRAWINGS) 27) HM DOOR AND FRAME (COLOR = DARK BRONZE) (28) EMERGENCY WATER CONNECTION 29 SEAMLESS ALUM. PANEL SYSTEM W/ EXPOSED FASTENERS -COLOR: DARK BRONZE 30 PROPANE LOCKER (31) ICE MERCHANDISER (32) GREASE STORAGE TANK (COLOR = DARK BRONZE) (33) STEEL BOLLARD (COLOR = DARK BRONZE) 34) CO2 FILLPORT (35) DECORATIVE ALUMINUM FENCE

CITY OF HUBER HEIGHTS STATE OF OHIO

ORDINANCE NO. 2022-O-2542

TO APPROVE A MAJOR CHANGE TO THE BASIC DEVELOPMENT PLAN FOR THE PROPERTY LOCATED AT NE CORNER OF OLD TROY PIKE AND TAYLORSVILLE ROAD FURTHER IDENTIFIED AS PARCEL NUMBER P70 04005 0015 ON THE MONTGOMERY COUNTY AUDITOR'S MAP AND ACCEPTING THE RECOMMENDATION OF THE PLANNING COMMISSION (CASE MJC 22-21).

WHEREAS, the citizens of Huber Heights require the efficient and orderly planning of land uses within the City; and

WHEREAS, the City Planning Commission has reviewed Case MJC 22-21 and on June 28, 2022, recommended approval by a vote of 3-2 of the Major Change; and

WHEREAS, the City Council has considered the issue.

NOW, THEREFORE, BE IT ORDAINED by the City Council of Huber Heights, Ohio that:

Section 1. The application requesting approval of a Major Change to the Basic Development Plan (Case MJC 22-21) is hereby approved in accordance with the Planning Commission's recommendation and following conditions:

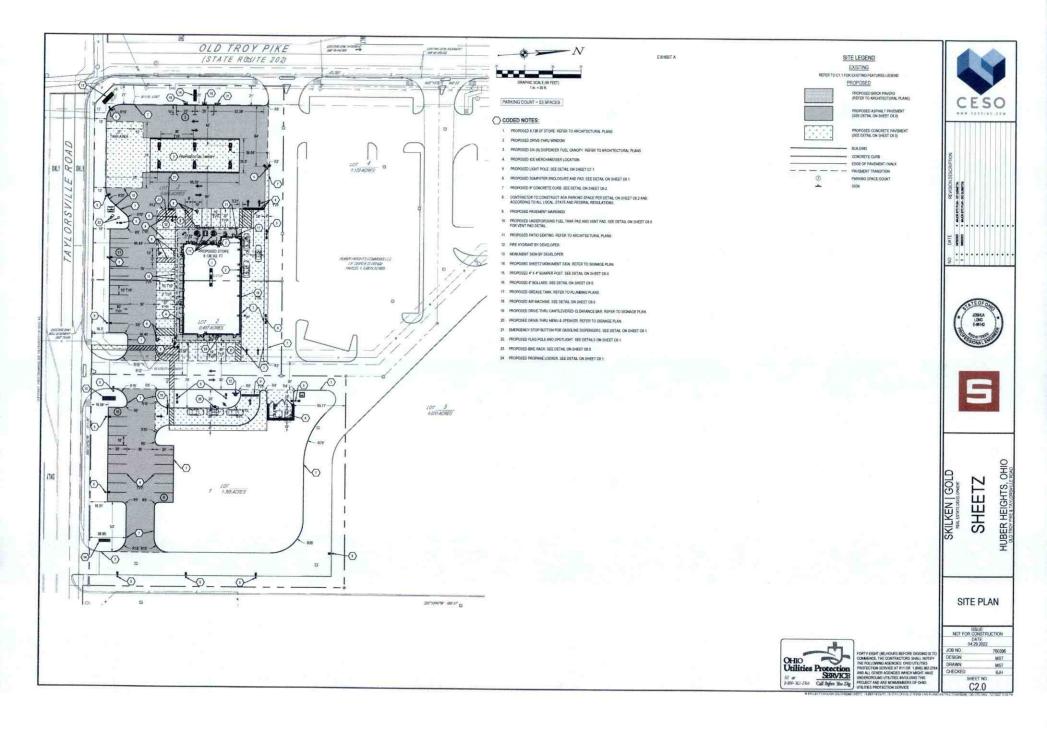
- All conditions approved by the Planning Commission on May 21, 2021, shall remain in effect;
- 2. The two additional ground mounted gas price signs shall not exceed 6'-10";
- 3. The applicant shall comply with all engineering, building and fire codes;
- 4. The applicant shall update the basic development plan to reflect all conditions imposed by the Planning Commission;
- 5. The Basic Development Plan shall be the revised site plan submitted July 28, 2022 and attached as Exhibit A;
- 6. The addition of a car wash shall be considered by this Council no sooner than one year from the effective date of this Ordinance.
- 7. Prior to the issuance of a zoning permit, the applicant shall enter into a PUD Agreement with the City for the purpose, but not the sole purpose, of establishing the development obligations of the applicant and requiring the submittal of a performance bond, cash bond, or letter of credit to insure the installation of landscaping as approved. The bond or letter of credit shall be in an amount equal to the applicant's estimate of the cost of installation as approved by the Planning Department and shall remain in effect until such time as the landscaping has been completed as determined by the Planning Department. Upon completion of the installation of landscaping as required by the approved landscape plan, the applicant may request release of the performance bond or letter of credit. Following an inspection by the Planning Department and upon determination by the department that the landscaping has been completed in accordance with the approved landscaping plan, 80% of the performance bond or letter of credit may be released. However, the performance bond or letter of credit will not be released until a maintenance bond lasting three growing seasons, or letter of credit equal to 20% of the initial performance bond or letter of credit to ensure maintenance of the landscaping, is submitted to and accepted by the Planning Department. The term of the maintenance bond shall be three growing seasons.

Section 2. It is hereby found and determined that all formal actions of this Council concerning and relating to the passage of this Ordinance were adopted in an open meeting of this Council, and that all deliberations of this Council and of any of its Committees that resulted in such formal action were in meetings open to the public and in compliance with all legal requirements including Section 121.22 of the Ohio Revised Code.

Section 3. This Ordinance shall go into effect upon its passage as provided by law and the Charter of the City of Huber Heights.

Passed by Council on the 8th day of August, 2022; <u>5</u> Yeas; <u>3</u> Nays.

Effective Date: September 8, 2022


AUTHENTICATION:

Arthor C. Red Clerk of Council 8-9-22

Date

Mayor B/10/22

Date

Huber Heights Fire Division

Inspections require two business days advance notice! (OAC)1301:7-7-09(A)(5)

1	Occupancy Nam	e:	Broad Reach De	Broad Reach Development - Sheetz				
	Occupancy Addr	ess:	Old Troy Pike & Taylorsville Road					
	Type of Permit:		HHP&D Site Pla	HHP&D Site Plan				
	Additional Permi	ts:	Choose an item.					
	Additional Permi	ts:	Choose an item.					
	MCBR BLD: Not Ye		et Assigned	HH P&D:				
	MCBR MEC:			HHFD Plan:	22-194			
	MCBR ELE:			HHFD Box:				
	REVIEWER:	Suson	g	DATE:	9/8/2022			

Fire Department Comments:

The Huber Heights City Code Part 15 Refers to Fire Code Requirements and has adopted by reference OFC and IFC Appendices

These comments are based only on the proposed site work, fire department access and basic fire protection concept at this time. A full plan review of the building systems, fire protection, egress and life safety will need to be conducted once the architectural plans have been submitted for permit. The proposed development will need to meet the requirements of the Ohio Fire Code 2017, Ohio Building Code 2017, and the Huber Heights Codified Ordinance. <u>Based on the drawings provided the following requirements need to be met.</u>

Requirements: (Site Plan)

- The canopy over fuel pumps shall have a clearance of 13 feet 6 inches or higher for fire apparatus clearance. Ohio Fire Code 503.2.1.
- The turn radius for the first entrance off Old Troy Pike needs to be increased/decreased for Huber Heights Fire apparatus to make turn onto service road. Ohio Fire Code D103.3 and 503.2.4. (Confirm if island is a curbed concrete island or striped pavement.)
- Hydrants in multi-family and commercial districts shall be placed not more than 300 feet apart, measured on the main and not more than 400 feet from any opening in any building. All new fire hydrants and any existing fire hydrants that are in need of replacement, shall meet the Huber Heights hydrant standard for this district of two (2), five (5) inch diameter steamer nozzles. These steamer nozzles shall have a five (5) inch STORTZ quick connection and one steamer

shall have a four (4) inch STORTZ connection approved by the Code Official. Huber Heights Codified Ordinance 1521.06(c). (Only one hydrant is shown on drawing C4.0 and it is being connected to a water main that is no longer being installed. A new utility drawing shall be submitted.)

- Unobstructed access to fire hydrants shall be maintained at all times. The fire department shall not be deterred or hindered from gaining immediate access to fire protection equipment or fire hydrants. Ohio Fire Code 507.5.4. (*This will need to be confirmed once a drawing has been provided showing hydrants.*)
- A 3-foot (914 mm) clear space shall be maintained around the circumference of fire hydrants except as otherwise required or approved. (No trees, bushes, plantings, etc.) Ohio Fire Code 507.5.5. (*This will need to be confirmed once a drawing has been provided showing hydrants.*)

Please reference contact information below for questions or concerns with this document.

Plans reviewed by the Huber Heights Fire Division are reviewed with the intent they comply in <u>ALL</u> respects to this code, as prescribed in <u>SECTION (D) 104.1 of the 2017 Ohio Fire Code</u>. Any omissions or errors on the plans or in this review do not relieve the applicant of complying with <u>ALL</u> applicable requirements of this code. These plans have been reviewed for compliance with the Ohio Fire Code adopted by this jurisdiction. There may be other regulations applicable under local, state, or federal statues and codes, which this department has no authority to enforce and therefore have not been evaluated as part of this plan review.

Information

Agenda Title

REZONING AND BASIC DEVELOPMENT PLAN - The applicant, THOMAS E. DUSA, is requesting approval of a Rezoning to PI - Planned industrial and a Basic Development Plan for a proposed lot for overnight truck parking - future repair service garage. Property is located at Corner of Technology Blvd and Artz Road (RZ BDP 22-35). THIS IS BEING MOVED TO 9/27/22.

Purpose and Background

Attachments

No file(s) attached.

AI-8624 Planning Commission Meeting Date: 09/13/2022

Minutes

Information

Agenda Title Planning Commission August 9, 2022

Purpose and Background

Attachments

Minutes

Planning Commission August 9, 2022, Meeting City of Huber Heights

- **I.** Chair Terry Walton called the meeting to order at approximately 6:01 p.m.
- **II.** Present at the meeting: Mr. Jeffries, Ms. Opp, Ms. Thomas, Ms. Vargo and Mr. Walton.

Members absent: None.

Staff Present: Aaron K. Sorrell, Interim City Planner, and Geri Hoskins, Planning & Zoning Administrative Secretary.

III. Opening Remarks by the Chairman and Commissioners

IV. Citizens Comments

None.

V. Swearing of Witnesses

Mr. Walton explained the proceedings of tonight's meeting and administered the sworn oath to all persons wishing to speak or give testimony regarding items on the agenda. All persons present responded in the affirmative.

VI. Pending Business

1. None

VII. New Business

1. MINOR CHANGE - The applicant, McBRIDE DALE CLARION, is requesting approval of a Minor Change for year-long outdoor sales at the Kroger Store and Fuel Center. Property is located at 7747 Old Troy Pike (MC 22-30).

Mr. Walton stated that the applicant withdrew their application.

2. LOT SPLITS - The applicant, LUIS RIANCHO & ASSOCIATES, INC., is requesting approval to replat one 19.1291 acre lot into 4 existing lots with total acreage between 19.94 and 10.78 acres. Property is located at 7860 Bellefontaine Road (LS 22-32).

Mr. Sorrell stated that this site was recently the subject of a rezoning request to construct a paintball facility. Four adjacent neighbors are purchasing the site and enlarging their existing lots. All current lots are zoned Agriculture and there is no anticipated change of use.

The city is requesting right of way dedication, consistent with the thoroughfare plan.

Planning Commission Meeting

August 9, 2022

The applicant requests to replat one 19.1291-acre lot into four existing lots with total acreages between 19.94 and 10.78 acres. All lots meet minimum zoning requirements.

The proposed replat meets all requirements of the subdivision regulations and the applicant is dedicating various depths of right-of-way consistent with the thoroughfare plan.

No Fire comments received

No City Engineer comments received

After reviewing the applicant's proposal, staff recommends approval of the replat of 19.1291 acres submitted with the application dated August 2, 2022.

Luis Riancho was present.

Action

Mr. Jeffries moved to approve the request by the applicant LUIS RIANCHO & ASSOCIATES, INC., for approval to replat one 19.1291 acre lot into 4 existing lots with total acreage between 19.94 and 10.78 acres. Property is located at 7860 Bellefontaine Road (LS 22-32) in accordance with the recommendation of Staff's Memorandum dated August 3, 2022, and the Planning Commission Decision Record attached thereto.

Seconded by Ms. Thomas. Roll call showed: YEAS: Ms. Opp, Ms. Vargo, Mr. Jeffries, Ms. Thomas, and Mr. Walton. NAYS: None. Motion to approve carried 5-0.

3. DETAILED DEVELOPMENT PLAN - The applicant, APP ARCHITECTURE, is requesting approval of a Detailed Development Plan to create a freestanding emergency and urgent care center. Property is located at 7611 Old Troy Pike (DDP 22-29).

Mr. Sorrell stated that the applicant requests approval of a detailed development plan to construct a 10,800square-foot healthcare facility for outpatient and emergency services. The applicant anticipates an initial volume of 30 - 40 patients per day, with a maximum of 50 - 60 patients per day once established.

The Basic Development Plan and rezoning public hearing was held by the City Council on Monday, July 25, 2022. This staff report assumes the rezoning and Basic Development Plan will be approved on Monday, August 8, 2022. If approved by Council, the Detailed Development Plan will be considered by the Planning Commission the following day. While this is not our typical practice, accommodations have been made for other developments in an equivalent manner. No zoning permits will be issued until the rezoning is effective 30 days after Council approval.

To address the concerns of a third curb-cut along Taylorsville, the applicant has worked with Rural King to obtain an access agreement along the Taylorsville

Planning Commission Meeting

August 9, 2022

frontage and use the existing Rural King entrance. The site plan also moves the identification sign to the western side of the site.

On June 3, 2022, the Planning Commission voted to recommend approval of the rezoning from Planned Commercial to Planned Office and approval of the basic development plan with the following conditions:

- Street trees shall be placed every 40 feet along Taylorsville Road.
- The applicant shall comply with Chapter 1181.18 Screening of Service Structures.
- The applicant shall comply with Chapter 1181.21 Lighting Standards.
- The applicant shall comply with Chapter 1182 Landscaping and Screening.
- Wall and canopy signs shall be similar to those submitted in the sign package submitted to the Planning Commission on April 12, 2022.
- Ground signs shall not exceed 6 feet in height.
- The applicant shall comply will all fire code requirements.

The applicant has submitted a Detailed Development that meets these conditions.

This revised Basic Development plan addressed the Taylorsville Road access concerns of the Planning Commission and City Council. The Detailed Development Plan substantially conforms to the approved Basic Development and conforms to the PO district regulations including parking and buffering.

1173 (PO) Planned Office District

The proposed use is principally permitted in the PO district.

The required 15-foot perimeter yard is provided in the Detailed Development Plan.

Chapter 1181 General Provisions

The Detailed Development Plan meets the requirements of Chapter 1181:

Street Trees

The Detailed Development Plan indicates street trees placed 25' on center, consistent with the zoning code.

Lighting

The Detailed Development Plans include a photometric study that illustrates the light trespass is minimal and meets code requirements along the public right of way. There is slight light trespass onto the adjacent parking lots, but those parking areas are also illuminated; therefore, there is no impact from the light trespass.

Screening of Service Structures

The Detailed Development Plan indicates the dumpster and service structures will be screened according to code.

Planning Commission Meeting August 9, 2022 Chapter 1182 Landscaping and Screening Standards

The Detailed Development Plan illustrates a significant landscaping and screening program associated with the development. The plan conforms to the street tree frontage requirements and all perimeter parking landscape requirements.

Chapter 1185 Parking and Loading

The Detailed Development Plan meets the requirements of Chapter 1185. The applicant is illustrating areas for parking island landscaping. Based on the interior programming, 45 spaces are required, and 50 spaces are illustrated.

The applicant has secured an agreement with Rural King for access through the Rural King parking area parallel to Taylorsville Road.

Chapter 1189 Signs

The applicant is requesting a mixture of signage, including one ground-mounted sign, three corporate wall signs, three "Emergency" wall signs and one "Ambulance" canopy sign. The sign package submitted with the application is consistent with the conditions imposed by the Planning Commission.

Recommendation

Staff feels the standards of approval outlined in 1171.09 can be met, and therefore staff recommends approval of the Detailed Development Plan with the following conditions:

- 1. The applicant shall comply will all fire code requirements.
- 2. The applicant shall comply with all conditions imposed by the City Council as a condition of the rezoning and Basic Development Plan approval.

Brian Dean was present

<u>Action</u>

Ms. Vargo moved to approve the request by the applicant APP ARCHITECTURE, for approval OF A Detailed Development Plan to create a freestanding emergency and urgent care center. Property is located at 7611 Old Troy Pike (DDP 22-29) in accordance with the recommendation of Staff's Memorandum dated August 3, 2022, and the Planning Commission Decision Record attached thereto.

Seconded by Ms. Opp. Roll call showed: YEAS: Ms. Opp, Ms. Vargo, Mr. Jeffries, Ms. Thomas, and Mr. Walton. NAYS: None. Motion to approve carried 5-0.

Planning Commission Meeting August 9, 2022

VIII. Additional Business

None.

IX. Approval of the Minutes

Without objection, the minutes of the July 12, 2022, Planning Commission meeting are approved.

X. Reports and Calendar Review

XI. Upcoming Meetings

August 23, 2022 September 13, 2022

XII. Adjournment

There being no further business to come before the Commission, the meeting was adjourned at approximately 6:40 p.m.

Terry Walton, Chair

Date

Date

Geri Hoskins, Administrative Secretary